
USING LEDs, LCDs
AND GLCDs IN
MICROCONTROLLER
PROJECTS

www.it-ebooks.info

http://www.it-ebooks.info/

USING LEDs, LCDs
AND GLCDs IN
MICROCONTROLLER
PROJECTS

Dogan Ibrahim
Near East University, Cyprus

www.it-ebooks.info

http://www.it-ebooks.info/

This edition first published 2012

2012, John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names
and product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered.
It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional
advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Ibrahim, Dogan.
Using LEDs, LCDs, and GLCDs in microcontroller projects / Dogan Ibrahim.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-119-94070-8 (cloth)

1. Information display systems. 2. Liquid crystal devices–Automatic
control. 3. Light emitting diodes–Automatic control. 4. Microcontrollers.
I. Title.

TK7882.I6I185 2012
629.8’9–dc23

2012009481

A catalogue record for this book is available from the British Library.

Print ISBN: 9781119940708

Set in 10/12 pt TImes by Thomson Digital, Noida, India

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Preface xiii

Acknowledgements xv

1 Introduction to Microcontrollers and Display Systems 1

1.1 Microcontrollers and Microprocessors 2

1.2 Evolution of the Microcontroller 3

1.3 Parts of a Microcontroller 4

1.3.1 Address 4

1.3.2 ALU 5

1.3.3 Analogue Comparator 5

1.3.4 Analogue-to-Digital Converter 5

1.3.5 Brown-out Detector 5

1.3.6 Bus 5

1.3.7 CAN 6

1.3.8 CISC 6

1.3.9 Clock 6

1.3.10 CPU 6

1.3.11 EEPROM 6

1.3.12 EPROM 6

1.3.13 Ethernet 7

1.3.14 Flash Memory 7

1.3.15 Harvard Architecture 7

1.3.16 Idle Mode 7

1.3.17 Interrupts 7

1.3.18 LCD Drivers 8

1.3.19 Pipelining 8

1.3.20 Power-on Reset 8

1.3.21 PROM 8

1.3.22 RAM 8

1.3.23 Real-time Clock 8

1.3.24 Register 9

1.3.25 Reset 9

1.3.26 RISC 9

1.3.27 ROM 9

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.28 Serial Input-Output 9

1.3.29 Sleep Mode 9

1.3.30 Supply Voltage 10

1.3.31 Timers 10

1.3.32 USB 10

1.3.33 Watchdog 10

1.4 Display Devices 10

1.4.1 LED 10

1.4.2 7-Segment LED 11

1.4.3 OLED 12

1.4.4 LCD 12

1.5 Summary 15

Exercises 15

2 PIC18F Microcontrollers 17

2.1 The PIC18F2410 Microcontroller 18

2.2 PIC18F2410 Architecture 19

2.2.1 The Program Memory 21

2.2.2 The Data Memory 21

2.2.3 Power Supply Requirements 22

2.2.4 Oscillator Configurations 24

2.2.5 The Reset 30

2.2.6 Parallel I/O Ports 31

2.2.7 Timer Modules 38

2.2.8 Analogue-to-Digital Converter Module 43

2.2.9 Special Features of the CPU 48

2.2.10 Interrupts 49

2.2.11 Pulse Width Modulator Module 53

2.3 Summary 56

Exercises 56

3 C Programming Language 59
3.1 C Languages for Microcontrollers 59

3.2 Your First mikroC Pro for PIC Program 61

3.2.1 Comments 61

3.2.2 Beginning and Ending a Program 62

3.2.3 White Spaces 63

3.2.4 Variable Names 63

3.2.5 Reserved Names 64

3.2.6 Variable Types 64

3.2.7 Constants 66

3.2.8 Escape Sequences 68

3.2.9 Volatile Variables 69

3.2.10 Accessing Bits of a Variable 69

3.2.11 sbit Type 70

3.2.12 bit Type 70

vi Contents

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.13 Arrays 70

3.2.14 Pointers 73

3.2.15 Structures 76

3.2.16 Unions 80

3.2.17 Operators in mikroC Pro for PIC 80

3.2.18 The Flow of Control 90

3.3 Functions in mikroC Pro for PIC 101

3.3.1 Function Prototypes 102

3.3.2 void Functions 103

3.3.3 Passing Parameters to Functions 104

3.3.4 Passing Arrays to Functions 106

3.3.5 Interrupt Processing 106

3.4 mikroC Pro for PIC Built-in Functions 108

3.5 mikroC Pro for PIC Libraries 109

3.5.1 ANSI C Library 109

3.5.2 Miscellaneous Library 111

3.6 Using the mikroC Pro for PIC Compiler 111

3.6.1 mikroC Pro for PIC IDE 112

3.6.2 Creating a New Source File 118

3.6.3 Compiling the Source File 122

3.7 Using the mikroC Pro for PIC Simulator 123

3.7.1 Setting a Break-Point 124

3.8 Other mikroC Pro for PIC Features 126

3.8.1 View Statistics 126

3.8.2 View Assembly 127

3.8.3 ASCII Chart 127

3.8.4 USART Terminal 127

3.8.5 Seven Segment Editor 127

3.8.6 Help 128

3.9 Summary 128

Exercises 129

4 PIC Microcontroller Development Tools – Including Display

Development Tools 131

4.1 PIC Hardware Development Boards 132

4.1.1 Super Bundle Development Kit 132

4.1.2 PIC18 Explorer Board 132

4.1.3 PIC18F4XK20 Starter Kit 134

4.1.4 PICDEM 4 135

4.1.5 PIC16F887 Development Kit 135

4.1.6 FUTURLEC PIC18F4550 Development Board 137

4.1.7 EasyPIC6 Development Board 137

4.1.8 EasyPIC7 Development Board 139

4.2 PIC Microcontroller Display Development Tools 140

4.2.1 Display Hardware Tools 140

4.2.2 Display Software Tools 143

Contents vii

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Using the In-Circuit Debugger with the EasyPIC7 Development Board 145

4.4 Summary 149

Exercises 149

5 Light Emitting Diodes (LEDs) 151

5.1 ATypical LED 151

5.2 LED Colours 153

5.3 LED Sizes 154

5.4 Bi-Colour LEDs 154

5.5 Tri-Colour LEDs 155

5.6 Flashing LEDs 155

5.7 Other LED Shapes 155

5.8 7-Segment LEDs 156

5.8.1 Displaying Numbers 157

5.8.2 Multi-digit 7-Segment Displays 159

5.9 Alphanumeric LEDs 159

5.10 mikroC Pro for PIC 7-Segment LED Editor 163

5.11 Summary 163

Exercises 164

6 Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 165

6.1 HD44780 Controller 165

6.2 Displaying User Defined Data 168

6.3 DDRAM Addresses 169

6.4 Display Timing and Control 171

6.4.1 Clear Display 172

6.4.2 Return Cursor to Home 172

6.4.3 Cursor Move Direction 172

6.4.4 Display ON/OFF 172

6.4.5 Cursor and Display Shift 173

6.4.6 Function Set 173

6.4.7 Set CGRAM Address 173

6.4.8 Set DDRAM Address 173

6.4.9 Read Busy Flag 174

6.4.10 Write Data to CGRAM or DDRAM 174

6.4.11 Read Data from CGRAM or DDRAM 174

6.5 LCD Initialisation 174

6.5.1 8-bit Mode Initialisation 175

6.5.2 4-bit Mode Initialisation 175

6.6 Example LCD Display Setup Program 177

6.7 mikroC Pro for PIC LCD Functions 180

6.7.1 Lcd_Init 180

6.7.2 Lcd_Out 181

6.7.3 Lcd_Out_Cp 181

6.7.4 Lcd_Chr 181

viii Contents

www.it-ebooks.info

http://www.it-ebooks.info/

6.7.5 Lcd_Chr_Cp 181

6.7.6 Lcd_Cmd 182

6.8 Summary 182

Exercises 183

7 Graphics LCD Displays (GLCD) 185

7.1 The 128� 64 Pixel GLCD 185

7.2 Operation of the GLCD Display 187

7.3 mikroC Pro for PIC GLCD Library Functions 189

7.3.1 Glcd_Init 189

7.3.2 Glcd_Set_Side 190

7.3.3 Glcd_Set_X 190

7.3.4 Glcd_Set_Page 190

7.3.5 Glcd_Write_Data 190

7.3.6 Glcd_Fill 190

7.3.7 Glcd_Dot 191

7.3.8 Glcd_Line 191

7.3.9 Glcd_V_Line 191

7.3.10 Glcd_H_Line 191

7.3.11 Glcd_Rectangle 192

7.3.12 Glcd_Rectangle_Round_Edges 192

7.3.13 Glcd_Rectangle_Round_Edges_Fill 192

7.3.14 Glcd_Box 193

7.3.15 Glcd_Circle 193

7.3.16 Glcd_Circle_Fill 194

7.3.17 Glcd_Set_Font 194

7.3.18 Glcd_Set_Font_Adv 194

7.3.19 Glcd_Write_Char 195

7.3.20 Glcd_Write_Char_Adv 195

7.3.21 Glcd_Write_Text 195

7.3.22 Glcd_Write_Text_Adv 195

7.3.23 Glcd_Write_Const_Text_Adv 196

7.3.24 Glcd_Image 196

7.4 Example GLCD Display 196

7.5 mikroC Pro for PIC Bitmap Editor 198

7.6 Adding Touch-screen to GLCDs 199

7.6.1 Types of Touch-screen Displays 200

7.6.2 Resistive Touch Screens 200

7.7 Summary 203

Exercises 204

8 Microcontroller Program Development 205

8.1 Using the Program Description Language and Flowcharts 205

8.1.1 BEGIN – END 206

8.1.2 Sequencing 206

Contents ix

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.3 IF – THEN – ELSE – ENDIF 206

8.1.4 DO – ENDDO 207

8.1.5 REPEAT – UNTIL 209

8.1.6 Calling Subprograms 209

8.1.7 Subprogram Structure 209

8.2 Examples 211

8.3 Representing for Loops in Flowcharts 216

8.4 Summary 218

Exercises 218

9 LED Based Projects 219

9.1 PROJECT 9.1 – Flashing LED 219

9.2 PROJECT 9.2 – Binary Counting Up LEDs 226

9.3 PROJECT 9.3 – Rotating LEDs 229

9.4 PROJECT 9.4 – Wheel of Lucky Day 231

9.5 PROJECT 9.5 – Random Flashing LEDs 239

9.6 PROJECT 9.6 – LED Dice 240

9.7 PROJECT 9.7 – Connecting more than one LED to a Port Pin 246

9.8 PROJECT 9.8 – Changing the Brightness of LEDs 250

9.9 PROJECT 9.9 – LED Candle 264

9.10 Summary 267

Exercises 267

10 7-Segment LED Display Based Projects 269
10.1 PROJECT 10.1 – Single Digit Up Counting 7-Segment LED Display 269

10.2 PROJECT 10.2 – Display a Number on 2-Digit 7-Segment LED Display 271

10.3 PROJECT 10.3 – Display Lottery Numbers on 2-Digit 7-Segment LED

Display 278

10.4 PROJECT 10.4 – Event Counter Using 4-Digit 7-Segment LED Display 285

10.5 PROJECT 10.5 – External Interrupt Based Event Counter Using 4-Digit

7-Segment LED Display with Serial Driver 292

10.6 Summary 302

Exercises 303

11 Text Based LCD Projects 305

11.1 PROJECT 11.1 – Displaying Text on LCD 305

11.2 PROJECT 11.2 – Moving Text on LCD 307

11.3 PROJECT 11.3 – Counting with the LCD 310

11.4 PROJECT 11.4 – Creating Custom Fonts on the LCD 315

11.5 PROJECT 11.5 – LCD Dice 317

11.6 PROJECT 11.6 – Digital Voltmeter 325

11.7 PROJECT 11.7 – Temperature and Pressure Display 327

11.8 PROJECT 11.8 – The High/Low Game 333

11.9 Summary 344

Exercises 345

x Contents

www.it-ebooks.info

http://www.it-ebooks.info/

12 Graphics LCD Projects 347

12.1 PROJECT 12.1 – Creating and Displaying a Bitmap Image 347

12.2 PROJECT 12.2 – Moving Ball Animation 355

12.3 PROJECT 12.3 – GLCD Dice 357

12.4 PROJECT 12.4 – GLCD X-Y Plotting 372

12.5 PROJECT 12.5 – Plotting Temperature Variation on the GLCD 374

12.6 PROJECT 12.6 – Temperature and Relative Humidity Measurement 385

12.7 Operation of the SHT11 386

12.8 Acknowledgement 389

12.9 Summary 400

Exercises 400

13 Touch Screen Graphics LCD Projects 401

13.1 PROJECT 13.1 – Touch Screen LED ON-OFF 401

13.2 PROJECT 13.2 – LED Flashing with Variable Rate 410

13.3 Summary 418

Exercises 418

14 Using the Visual GLCD Software in GLCD Projects 419

14.1 PROJECT 14.1 – Toggle LED 420

14.2 PROJECT 14.2 – Toggle more than One LED 425

14.3 PROJECT 14.3 – Mini Electronic Organ 426

14.4 PROJECT 14.4 – Using the SmartGLCD 430

14.5 PROJECT 14.5 – Decimal to Hexadecimal Converter using the SmartGLCD 444

14.6 Summary 452

Exercises 452

15 Using the Visual TFT Software in Graphics Projects 453

15.1 PROJECT 15.1 – Countdown Timer 454

15.2 PROJECT 15.2 – Electronic Book 462

15.3 PROJECT 15.3 – Picture Show 467

15.4 Summary 472

Exercises 472

Bibliography 473

Index 475

Contents xi

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A microcontroller is a single chip microprocessor system, which contains data and program

memory, serial and parallel I/O, timers, and external and internal interrupts, all integrated

into a single chip that can be purchased for as little as £2.00. About 40% of microcontroller

applications are in office automation, such as PCs, laser printers, fax machines, intelligent

telephones, and so on. About one-third of microcontrollers are found in consumer electronic

goods. Products such as CD players, hi-fi equipment, video games, washing machines, cook-

ers and so on fall into this category. The communications market, automotive market and the

military share the rest of the application areas.

Input and output are very important parts of any microcontroller system. Typical input

devices are push-button switches, keypads and various analog and digital sensors. Typical

output devices are Light Emitting Diodes (LEDs), Liquid Crystal Displays (LCDs), Graphics

Liquid Crystal Displays (GLCDs), motors, actuators, buzzers, and so on. This book is about

the theory and applications of display devices in microcontroller based systems. The book

explains briefly the theory of the commonly used display devices, namely LEDs, 7-Segment

LED displays, LCDs, monochrome GLCDs and TFT based colour LCDs. In addition, the use

of each display device is explained with several working and tested projects. The description,

block diagram, circuit diagram, operation and full program code of all the projects are given.

PIC18F series of high-end microcontrollers are used in all the projects. The projects

are developed using the highly popular mikroC Pro for PIC compiler. Knowledge of the

C programming language will be useful. Also, familiarity with at least one member of

the PIC16F series of microcontrollers will be an advantage. The knowledge of assembly

language programming is not required because all the projects in the book are based on using

the C language.

This book is written for students, for practising engineers and for hobbyists interested in

developing display based projects using the PIC series of microcontrollers.

Chapter 1 presents the basic features of microcontrollers and the basic features of display

devices used in such systems.

Chapter 2 provides a review of the PIC18 series of microcontrollers. Various features of

these microcontrollers are described in detail. The PIC18F2410 is chosen as a typical

microcontroller.

Chapter 3 provides a short tutorial on the C language and then examines the features of the

mikroC Pro for PIC compiler used in PIC series of microcontrollers.

Chapter 4 is about the important topic of microcontroller development tools. Both the soft-

ware and hardware development tools are described in detail. In addition, the use of micro-

controller simulators and in-circuit debuggers are described with examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 provides the basic theory of LEDs. The use of simple LEDs and 7-Segment

simple and multiplexed LEDs are explained with examples.

Chapter 6 provides some simple projects using the PIC18 series of microcontrollers and

the mikroC Pro for PIC C language compiler. All the projects in this chapter are based on

the PIC18F452 microcontroller and all the projects have been tested and are working. This

chapter should be useful for those who are new to PIC microcontrollers, and for those who

want to extend their knowledge of programming PIC18F series of microcontrollers using the

mikroC Pro for PIC language.

Chapter 7 covers the theory of LCD displays. The basic working principles of LCDs and

the mikroC Pro for PIC built-in LCD functions are explained with several examples.

Chapter 8 is about the Program Development Language (PDL) used to describe the opera-

tion of software in general. Various building blocks of the PDL are described in this chapter.

Chapter 9 provides simple LED based projects, ranging from LED flashing to more com-

plex LED projects.

Chapter 10 is about 7-Segment LED based projects. Several single digit and multiplexed

working and tested projects are given in this chapter with full source code.

Chapter 11 provides several text based LCD projects. The use of LCDs is described in this

chapter through simple and complex projects, ranging from displaying simple text on an

LCD to developing an LCD based voltmeter project.

Chapter 12 is about the use of GLCDs in microcontroller projects. The use of standard

monochromatic 128� 64 pixel GLCD is used in the projects in this chapter.

Touch screen displays are important application areas of microcontrollers. Chapter 13

gives several projects on using touch screens in graphics applications.

The Visual GLCD software package is used for the development of projects based on sev-

eral different types of monochromatic GLCD displays. Chapter 14 explains the use of this

software package and gives the steps required to develop GLCD based applications. Several

projects are given in this chapter using the Visual GLCD software package with both

128� 64 pixel and 240� 128 pixel GLCD displays.

Finally, Chapter 15 is about the Visual TFT software package used for the development of

TFT based colour graphics applications. The chapter describes the steps required to create

microcontroller based TFT graphics applications using the MikroMMB graphics develop-

ment board.

Dogan Ibrahim

London, 2012

xiv Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgements

The following material is reproduced in this book with the kind permission of the respective

copyright holders and may not be reprinted, or reproduced in any way, without their prior

consent.

Figures 2.1–2.6, 2.10, 2.11, 2.13, 2.17, 2.28, 2.30, 2.32–2.37 are taken from Microchip

Technology Inc. Data Sheet PIC18F2X1X/4X1X (DS39636D). Figures 4.2–4.4 are taken

from the web site of Microchip Technology Inc.

Figure 4.1 is taken from the web site of microEngineering Labs Inc.

Figure 4.5 and 4.6 are taken from the web site of Custom Computer Services Inc.

Figure 4.7 is taken from the web site of Futurlec Inc.

Figures 4.8 and 4.9 are taken from the web site of mikroElektronica.

PIC1, PICSTART1 and MPLAB1 are all trademarks of Microchip Technology Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

1

Introduction to Microcontrollers
and Display Systems

The basic building blocks of any digital computer are the central processing unit (CPU), the

memory and the input-output (I/O). The CPU is like the human brain, as it controls all inter-

nal operations of the computer. Instructions are fetched from the memory under the control

of the CPU, which it then decodes and controls various internal parts of the computer so that

the required operations are performed. The CPU also includes an arithmetic and logic unit

(ALU), which is used to perform mathematical and logical operations. The result of an oper-

ation is stored either in the memory, in a temporary register, or is sent to an I/O port. Two

types of memories are used in a computer, as far as memory functionality is concerned. The

program memory stores the user instructions and this memory is normally non-volatile, that

is the data is not lost after removal of the power. The second type of memory is the data

memory, which stores the temporary user data, such as the result of an operation. The I/O

ports allow the computer to communicate with the external world. For example, a keyboard

is an input device, enabling the user to enter data to the computer. Similarly, a printer is an

output device, enabling the user to print out a hard copy of data in paper form. Depending on

the actual application and the requirements, a computer may include additional components,

such as timers, counters, interrupt logic, clock logic, and so on.

A computer program consists of a collection of instructions for performing a specific task.

In the early days of computers, programs were written in Assembly language, which was a

short way of specifying instructions using words called mnemonics. Although Assembly lan-

guage was fast, it had several disadvantages. Writing a long and complex program using

Assembly language was difficult. More importantly, it was difficult to maintain a program

written in Assembly language. Also, different processors had different instruction sets and

different Assembly language instructions, resulting in no portability. Consequently, it was a

tedious task to convert a program written for one processor to function on another processor.

Over the last decade, nearly all programs have been written using a high level language such

as C, BASIC or Pascal. High level languages have several advantages. First, learning to pro-

gram in a high level language is easy. Second, the developed code is highly portable. For

example, a C program written for a processor can easily be modified to work on another type

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

of processor. This is true, even if the two processors are manufactured by different vendors.

Third, high level programs are much easier to develop and maintain.

1.1 Microcontrollers and Microprocessors

A microcontroller is basically a single chip computer, generally requiring no external com-

ponents. A microprocessor differs from a microcontroller in many ways. Perhaps the main

difference is that a microcontroller can function as a computer without the need of any exter-

nal hardware. A microprocessor, on the other hand, is just the CPU of a computer, and

requires several other external components before it becomes a useful computer. Because a

microcontroller consists of a single chip, its power consumption is low. The development of

a microcontroller based system is also easy, as the processing hardware consists of a single

chip. Perhaps the only advantage of a microprocessor over a microcontroller is that a micro-

processor can easily be expanded to have more memory or I/O. The expansion of microcon-

trollers is more difficult and a different model is usually chosen when higher performance,

more memory or more I/O are required.

Figure 1.1 shows the structure of a computer, built using a microprocessor. Here the

hardware consists of several components, all attached to the microprocessor chip. The

structure of a microcontroller based computer is shown in Figure 1.2. The advantages of

using a microcontroller instead of a microprocessor are clear when Figures 1.1 and 1.2 are

compared.

The differences between a microprocessor and a microcontroller are summarised below:

� A microprocessor is a single chip CPU microcontroller containing a CPU, memory, I/O,

timers, counters and much of the remaining circuitry of a complete computer system on a

single chip.
� The power consumption of a microprocessor based computer is very large, in the order of

amperes. On the other hand, the power consumption of a microcontroller based computer

is in the range of several hundred milliamperes. In addition, microcontrollers can be oper-

ated in sleep modes, which consume currents as low as tens of nanoamperes.
� A microprocessor based computer costs much more than a microcontroller based system.

Microprocessor Output

Program
memory

Interrupt
logic

Data
memory

 Timer A/D
converter Counter

 Input

Figure 1.1 Structure of a microprocessor based computer

2 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� Because a microcontroller based system consists of a single chip, it has higher reliability.
� Microprocessor based systems can easily be expanded, for example by adding more mem-

ory or I/O chips. It is usually not possible to expand a microcontroller system. If an appli-

cation requires more memory, more I/O or higher processing power, then a different model

microcontroller is usually chosen.

Although microcontrollers have only been with us for a few decades, they have been used in

many consumer, commercial, industrial and educational devices. Some examples are found

in:

� Offices: in typewriters, computers, calculators, photocopiers, scanners, plotters, elevators,

and so on;
� Homes: in microwave ovens, washing machines, alarm clocks, dish washers, hi-fi equip-

ment, DVD players, digital televisions, and so on;
� Industry: in automatic control systems, safety systems, robotics, motor control, and so on;
� Transportation systems: in vehicles, traffic signals, road signs, speed cameras, GPS sys-

tems, and so on;
� Supermarkets: in weighing scales, cash registers, electronic signs, card readers, and so on;
� Play: in electronic toys, MP3 players, video games, mobile phones, and so on;
� Education: in electronic white-boards, photocopiers, projectors, calculators, and so on.

1.2 Evolution of the Microcontroller

The first microprocessor, named the 4004, was introduced by the Intel Corporation in 1971.

This was a simple 4-bit device, supported by three other chips to make a computer; the 4001

and 4002 memory chips, and the 4003 shift register. 4004 was initially used in calculators

and in simple control applications.

Shortly after the 4004 appeared in the commercial marketplace, many electronic compa-

nies realised the power and future prospects of microprocessors and so have heavily invested

in this field. Three other general-purpose microprocessors were soon introduced: Rockwell

International 4-bit PPS-4, Intel 8-bit 8008 and the National Semiconductor 16-bit IMP-16.

Microprocessor OutputInput

Program
memory

Data
memory

Interrupt
logic

Timer A/D
converter

Counter

Figure 1.2 Structure of a microcontroller based computer

Introduction to Microcontrollers and Display Systems 3

www.it-ebooks.info

http://www.it-ebooks.info/

These microprocessors were based on PMOS technology and can be classified as the first-

generation devices.

In the early 1970s, we see the second-generation microprocessors in the marketplace,

designed using the NMOS technology. The shift to NMOS technology resulted in higher

execution speeds, as well as higher chip densities. During this time, we see 8-bit microproc-

essors such as the Motorola 6800, Intel 8080 and 8085, the highly popular Zilog Z80, and

Motorola 6800 and 6809.

The third generation of microprocessors were based on HMOS technology, which resulted

in higher speeds and, more importantly, higher chip densities. During 1978, we see the 16-bit

microprocessors such as the Intel 8086, Motorola 68 000 and Zilog Z8000. The 8086 micro-

processor was so successful that it was used in early PC designs (called PC XT).

The fourth generation of microprocessors appeared around the 1980s and the technology

was based on HCMOS. During this generation we see the introduction of 32-bit devices into

the marketplace. Intel introduced the highly popular 32-bit microprocessors 80 386, 80 486,

and the Pentium family; and Motorola introduced the 68 020 family. The Intel processors

have been used heavily in early PC designs. In parallel to the development of 32-bit micro-

processors, we see the introduction of early single chip computers (later named microcon-

trollers) into the marketplace. The Intel 8048 was the first microcontroller, followed by the

highly popular 8051 series. The 8051 device has been so popular that it is still in use today.

This device was a true single chip computer, containing a CPU, data memory and erasable

program memories, I/O module, timer/counter, interrupt logic, clock logic, and serial com-

munications module, such as the Universal Synchronous Asynchronous Receiver Transmitter

(USART). After the success of the 8051, we see many other companies offering microcon-

trollers. Today, some of the most popular general-purpose low-cost 8-bit microcontrollers

are Microchip PIC series, Atmel AVR series, Motorola HC11 series, and 8051 and its

derivatives.

The fifth and the current generation of microcontrollers are now based on 16-bit and 32-bit

architectures (e.g. PIC32 series). It is interesting to note that currently the 8-bit microcontrol-

lers are still popular and much more in demand. This is because of their simple architectures,

low cost, low power requirements, and the availability of the vast number of hardware and

software development tools. The power offered by the high-end 8-bit microcontrollers (e.g.

the PIC18F series) are enough for most medium to high-speed applications, except perhaps

in special cases of digital signal processing where much higher throughput is generally

required.

1.3 Parts of a Microcontroller

Before explaining microcontroller architectures and programming, it is worthwhile to look at

the parts of a microcontroller in more detail and understand some basic terms.

1.3.1 Address

Address is a binary pattern that is used to represent memory locations. An address bus is a

collection of address lines in a processor. For example, most 8-bit microcontrollers have

a 16-bit address bus, capable of addressing up to 65 536 different memory locations

(0 to 65 535).

4 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.2 ALU

An arithmetic and logic unit (ALU) is part of a computer where the actual mathematical and

logical operations are performed. 8-bit microcontrollers have 8-bit ALU modules. Typical

operations carried out by an ALU are addition, subtraction, division, logical ANDing,

ORing, Exclusive-OR and comparison. Some ALUs can also perform signed or unsigned

multiplication.

1.3.3 Analogue Comparator

Some microcontrollers have built-in analogue comparator modules. An analogue compar-

ator module is used to compare the voltage levels of two analogue signals. Although this

feature is implemented in most mid-range PIC microcontrollers, it is not an important

functionality.

1.3.4 Analogue-to-Digital Converter

Analogue-to-digital converter (A/D converter) is used to convert an analogue input signal

into digital form, so that the signal can be processed within the microcontroller. Most mid-

range PIC microcontrollers have built-in A/D converter modules. In general purpose and

low-speed applications, the A/D converters are 8 to 10 bits, having 256 or 1024 quantisation

levels. An A/D converter can either be unipolar or bipolar. Unipolar converters can only han-

dle signals that are always positive. Bipolar converters, on the other hand, can handle both

positive and negative signals. The A/D converters implemented in PIC series of microcon-

trollers are unipolar. The A/D conversion process is started by the user program and the

conversion can take tens of processor cycles to complete. The user program has the option of

either polling the conversion status and waiting until the conversion is complete, or alterna-

tively, the A/D converter completion interrupt can be enabled to generate an interrupt as soon

as the conversion is complete.

1.3.5 Brown-out Detector

Brown-out detectors in microcontrollers is a feature that can be configured to reset a micro-

controller if the power supply voltage falls below a nominal value. The brown-out detector is

a safety feature, as it protects the microcontroller data or the program from being corrupted

while working below the recommended supply voltage.

1.3.6 Bus

A bus is a collection of wires grouped together in terms of their functions. An 8-bit conven-

tional microprocessor usually has three buses: address bus, data bus and control bus. Mem-

ory and I/O addresses are sent over the uni-directional address bus. Data and instructions

from the memory are sent over the bi-directional data bus. Processor control signals are sent

over the uni-directional control bus. Some microprocessors have an additional I/O bus,

where the I/O device addresses are sent.

Introduction to Microcontrollers and Display Systems 5

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.7 CAN

CAN bus is used in the automotive industry. Some microcontrollers include CAN bus mod-

ules, which simplify the design of CAN bus based products. For example, the PIC18F4680

provides CAN interface.

1.3.8 CISC

CISC is also known as the Complex Instruction Computer. In CISC architecture, both data

and instructions are of the same width (e.g. 8-bits wide) and the microcontroller usually has

over 200 instructions. Data and instructions are on the same bus and cannot be fetched at the

same time.

1.3.9 Clock

A clock is basically a square wave signal used to provide timing signals to a digital proces-

sor. A clock is generated either using external devices (e.g. crystal, resistor-capacitor etc.), or

some microcontrollers have built-in clock generation circuits. The PIC18F microcontroller

family can operate with clock frequencies of up to 40MHz. The basic instruction cycle in a

PIC microcontroller takes four clock cycles. Thus, the effective operating frequency, or the

MIPS (Millions of Instructions per Second) value is equal to the clock frequency divided by

four, that is 10 MIPS.

1.3.10 CPU

The central processing unit (CPU), is the brain of a computer system, administering all activ-

ity in the system and performing all operations on data. The CPU consists of the ALU, sev-

eral registers, and the control and synchronisation logic. The CPU fetches instructions from

memory, decodes these instructions, and finally executes them. Decoding an instruction is

the process of deciding what control signals to send to other internal parts of the computer

for the successful execution of the instruction.

1.3.11 EEPROM

The electrically erasable programmable read only memory (EEPROM) is a non-volatile

memory that can be erased and reprogrammed using a suitable programming device.

EEPROMs are used in microcontroller based systems to store semi-permanent data, such as

configuration data, maximum and minimum values, identification data, setup data, and so on.

Most PIC microcontrollers have built-in EEPROM memories. One disadvantage of these

memories is their much slower write times than their read times.

1.3.12 EPROM

The erasable programmable read only memory (EPROM) can be programmed and erased.

An EPROM memory chip has a small clear-glass window on top of the chip, where the data

6 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

can be erased under strong ultraviolet light in a few minutes. An EPROM is programmed by

inserting the chip into a socket of an EPROM programmer device, which is connected to a

PC. After programming the chip, the window can be covered with dark tape to prevent acci-

dental erasure of the data, for example under direct sunlight. An EPROM must be erased

before it can be re-programmed. EPROM memories are commonly used during the program

development time where the programs keep changing until finalised. Some versions of

EPROMs are known as One Time Programmable (OTP), which can be programmed only

once but cannot be erased.

1.3.13 Ethernet

The Ethernet interface enables a microcontroller to be connected to a local area network, and

in addition provides Ethernet interface capabilities. A microcontroller with such an interface

can be connected to the Internet and can send and receive TCP/IP based packets. Some

microcontrollers, such as the PIC18F97J60, have built-in Ethernet capabilities.

1.3.14 Flash Memory

Flash memory is a non-volatile memory used mainly to store user programs. This type of

memory can be programmed electrically while embedded on the board. Some microcontrol-

lers have only 1 KB flash memory, while some others can have 32KB or more. In addition to

computers, flash memory is also used in mobile phones and digital cameras.

1.3.15 Harvard Architecture

This is a type of CPU where the program memory and data memory units and buses are

separate. The result is that the processor can fetch instructions and data at the same time,

thus increasing the performance. Several microcontrollers, including the PIC family, are

designed using the Harvard architecture.

1.3.16 Idle Mode

This mode is similar to the sleep mode and is used to conserve power. In idle mode, the

internal oscillator is off but the peripheral devices are on.

1.3.17 Interrupts

Interrupts cause a microcontroller to respond to external or internal events in the shortest pos-

sible time. An internal interrupt usually comes from the timer module, where an interrupt can

be generated whenever a timer overflows. Thus, events can be scheduled to happen at regular

intervals. External interrupts usually come from the microcontroller I/O ports. For example,

the microcontroller can be configured to create an interrupt when the state of a port pin

changes its value. When an interrupt occurs, the microcontroller leaves its normal flow of

program execution and jumps to the Interrupt Service Routine (ISR). At this point the code

inside the ISR is executed and at the end of this code the program returns and continues to

Introduction to Microcontrollers and Display Systems 7

www.it-ebooks.info

http://www.it-ebooks.info/

execute the code just before the interrupt occurred. The ISR is usually at a fixed address of the

program memory, known as the interrupt vector address. Some microcontrollers have priority

based interrupt sources, with different interrupt vector addresses for different sources.

1.3.18 LCD Drivers

Some microcontrollers offer LCD drivers and interface signals, so that standard LCD

modules can be directly connected. Since all of the LCD functions can be implemented in

software, such microcontrollers are not popular.

1.3.19 Pipelining

Pipelining is a technique used in computer systems to overlap the instruction fetch time with

execution time. This allows higher throughput as two operations are performed in parallel. In

microcontrollers, pipelining is generally used to fetch the next instruction while executing

the current instruction. PIC microcontrollers use two-stage pipelining to speed up the execu-

tion time.

1.3.20 Power-on Reset

The power-on reset circuit keeps the microcontroller in the reset state until all the internal

circuitry has been initialised. This is important, as it places the microcontroller clock into a

known state. The power-on reset can be enabled or disabled during programming of PIC

microcontrollers.

1.3.21 PROM

Programmable read only memory (PROM) is a non-volatile memory similar to a ROM.

But PROM can be programmed by the end user with the aid of a PROM programmer device.

PROM can only be programmed once and its contents cannot be changed after programming

the device.

1.3.22 RAM

Random access memory (RAM) is a general purpose read-write memory used to store tem-

porary data in a program. RAM is a volatile memory where the stored data is cleared after

the power is turned off. All microcontrollers have some amount of RAM. Some may have

only a few hundred bytes, while others can have up to 4 KB or more.

1.3.23 Real-time Clock

A real-time clock enables a microcontroller to receive absolute date and time information.

Some microcontrollers have built-in hardware real-time clock modules. In general, an exter-

nal real-time clock chip can be connected to general purpose microcontroller I/O ports to

receive the absolute date and time information.

8 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.24 Register

A register is a volatile, temporary high-speed storage for data. All microcontrollers have some

amount of registers. Some microcontrollers, such as the PIC family, have a Special Function

Register (SFR), used to hold the configuration data for various functions of the microcontrol-

ler. For example, the I/O direction registers hold the direction of each I/O pin. Similarly, the

PORT registers hold the data received from a port, or data to be sent to an I/O port.

1.3.25 Reset

All microcontrollers have reset facilities. A reset action can be automatic by software (e.g.

when the watchdog is enabled but not refreshed), or an external button can be used to reset

the microcontroller. Reset puts the microcontroller into a known state. Usually, after a reset,

the program starting from memory address 0 of the microcontroller is executed.

1.3.26 RISC

In a Reduced Instruction Set Computer (RISC) microcontroller, the data and instructions

are not usually of the same width. For example, in an 8-bit RISC microcontroller, the data is

8-bits but the instructions can be 12, 14 or 16 bits wide. RISC microcontrollers have a lim-

ited number of instructions (e.g. not more than 50).

1.3.27 ROM

Read only memory (ROM) is non-volatile and is used to store user programs. A ROM

is normally programmed in the factory during the manufacturing process. ROM is not re-

programmable and its contents cannot be erased. ROM is normally used when a program has

been tested and is working correctly, and it is desired to make thousands of copies of the

same program.

1.3.28 Serial Input-Output

Serial ports on a microcontroller enable communication using the RS232 protocol. For

example, the microcontroller can be connected to a PC via its serial port and then data can

be exchanged between the microcontroller and the PC. Although serial communication can

be implemented in software, most microcontrollers have built-in USART modules to read

and write serial data through its ports. Most mid-range PIC microcontrollers are equipped

with at least one USART module.

1.3.29 Sleep Mode

Some microcontrollers have built-in sleep modes where, in this mode, the internal oscillator

is stopped. The reason for using this mode is to reduce the power consumption to a very low

level. In this mode all the microcontroller internal circuitry and the peripheral devices are in

the off state. The microcontroller is usually woken up from sleep mode by an external reset

or a watchdog time-out.

Introduction to Microcontrollers and Display Systems 9

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.30 Supply Voltage

Most microcontrollers operate with the standard logic voltage of þ5V. The range of accept-

able voltage is usually in the range þ4.75 to þ5.25V. The manufacturers’ data sheets usually

give the acceptable power supply voltage limits. PIC18F microcontrollers can operate with a

power supply of þ2 to þ5.5V. The required power supply voltage is usually obtained using a

regulated power supply. In portable applications, the þ5V supply is obtained using a þ9V

battery with a þ5V regulator chip (e.g. 78L05).

1.3.31 Timers

Timers are used in timing and counting applications. Most microcontrollers are equipped

with at least one, and in many cases, several timers. A timer is usually 8 or 16 bits wide.

Data is loaded into the timer under program control. The timer counts up at each clock pulse

(or every time an external event occurs), and when the timer overflows an interrupt is gener-

ated (if interrupts are enabled). One common application of timers is to generate delays in

programs, or to schedule events at regular intervals.

1.3.32 USB

USB is a powerful high-speed communications port used to connect various devices together.

Some microcontrollers include built-in USB modules, which simplify the USB based com-

munications. For example, the PIC18F2� 50 microcontroller has a built-in USB module.

1.3.33 Watchdog

Awatchdog is basically a programmable timer circuit that can be refreshed by the user pro-

gram. It is usually used in real-time, and time based applications where time critical modules

of a program are used to refresh the watchdog. If the watchdog fails to be refreshed, this is a

sign that a time critical module has not completed its task. An automatic software reset

occurs if the watchdog is enabled but is not refreshed. The watchdog is a safety feature, used

to detect loops and runaway code in programs.

1.4 Display Devices

Display devices are output devices that can be connected to I/O ports of microcontrollers.

Most electronic equipment, whether consumer related, commercial or industrial, have some

form of display device, for example, mobile phones, calculators, GPS systems, printers,

computers, MP3 players, microwave ovens, and so on.

In this section we are only concerned with small display devices commonly used in micro-

controller based projects. In general, we can divide these display devices into three groups:

LED based, OLED based and LCD based.

1.4.1 LED

Light Emitting Diode (LED) based displays are further divided into two groups: Simple LED

based and 7-segment LED based. Simple LED devices (see Figure 1.3) consist of a single or

an array of LEDs, commonly used in applications to indicate the status of something, for

10 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

example, the on/off status of an electronic device, the selection of an item, and so on. Simple

LEDs are available in various colours, such as red, green, orange, blue and white, and are

directly connected to I/O ports of microcontrollers via current limiting resistors.

1.4.2 7-Segment LED

7-segment LEDs (see Figure 1.4) are generally used to display numeric data. The numbers

are made up of 7 segments and the required number is displayed by turning on or off the

appropriate segments. There are two types of 7-segment displays: common-anode or

common-cathode. In common-anode displays, the anode pin is connected to the supply

voltage and the individual segments are turned on by grounding the required segment. In a

common-cathode type display, the cathode is connected to ground and the individual seg-

ments are turned on by applying voltage to the required segment. Both types can easily be

connected and driven from a microcontroller I/O pin. To display numbers between 0 and 9, a

single digit is used. To display higher numbers, it is necessary to use multiple digits

(see Figure 1.5). In multi-digit applications, each digit is turned on or off by controlling its

Figure 1.3 Simple LEDs

Figure 1.5 7-segment multiplexed 4-digit display

Figure 1.4 7-segment display

Introduction to Microcontrollers and Display Systems 11

www.it-ebooks.info

http://www.it-ebooks.info/

common pin. The digits are enabled and disabled alternately, and very fast in such a way that

when viewed the user thinks that the display is stationary.

1.4.3 OLED

Organic Light Emitting Diode (OLED) displays can be used to display text as well as graphi-

cal images. These displays are constructed by inserting organic material between a pair of

electrodes where at least one of the electrodes is transparent. When an electric current is

applied to the two conductors, a bright, electro-luminescent light is produced from the

organic material. There are two types of OLEDs, as far as the used material is concerned:

those based on small molecules and those employing polymers. OLED displays work with-

out a backlight and thus they can be used both outdoors and indoors in low ambient light

conditions.

OLEDs have several advantages compared to other displays:

� OLEDs have wide viewing angles and improved brightness. The pixel colours appear cor-

rect, even as the viewing angle approaches vertical from normal.
� OLED displays have very fast response times, more than 200 times faster than LCDs.
� OLED displays can be fabricated on flexible substrates, with the possibility of making roll-

up displays embedded in fabrics.
� OLED displays produce sharp and bright pictures.
� Extremely thin and lightweight OLED displays can be constructed.
� The power consumption of OLED displays is extremely low.

OLEDs have some disadvantages compared to other displays:

� Manufacturing of OLED displays is costly.
� OLED displays have limited lifespans, usually 14 000 hours (corresponding to 5 years at

8 hours a day usage).
� OLED displays can be damaged by water and therefore tight sealing is required, which

increases the cost.
� OLED displays suffer from screen burn-in problems, where pixels fade after displaying the

same content for a long time.
� OLED displays can be damaged by exposure to UV light. As a result, OLED displays

cannot be used in countries where the UV is very high. Manufacturers usually install UV

blocking filters over the screen to protect the displays.
� The material used to produce blue light degrades more rapidly than the materials used for

other colours. As a result, the colour balance of the overall display changes, causing the

colours to be wrongly displayed.

1.4.4 LCD

The Liquid Crystal Display (LCD) is one of the most commonly used displays today. There

are basically three types of LCDs as far as the type of data that can be displayed is con-

cerned: Segment LCD, Dot Matrix LCD and Graphic LCD.

12 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Segment LCD is also known as the alphanumeric LCD. These LCDs can display numbers

represented by 7 segments, or numbers and Roman letters represented by 14 or 16 segments.

In addition, symbols can also be displayed. The segment LCDs are limited to displaying

numbers, text and symbols. If we need to display other characters or shapes, then either a dot

matrix display or a graphic display should be used. Figure 1.6 shows a typical 16-segment

LCD display.

Dot Matrix LCD is also known as the character LCD. The most commonly used dot matrix

LCD displays are 2 lines of 16 characters. Each character is represented by 5� 7 dots (or

5� 8 characters including the cursor). Dot matrix LCDs can display alphanumeric data,

including a subset of symbols. Figure 1.7 shows a typical dot matrix LCD display.

Graphic LCDs are composed of pixels and provide the greatest flexibility to the user. In a

graphic LCD, pixels are arranged in rows and columns and each pixel can be addressed indi-

vidually. Graphic LCDs are used when we need to display numbers, letters, symbols, shapes

or pictures. Figure 1.8 shows a typical graphics LCD display.

LCD displays produce no light of their own and so require an external light source to be

visible. On some displays, a cold cathode fluorescent lamp is inserted behind the LCD panel.

On some other models, the ambient light is used to make the display visible.

Figure 1.7 Dot matrix LCD display

Figure 1.6 16-segment LCD display

Figure 1.8 Graphics LCD display

Introduction to Microcontrollers and Display Systems 13

www.it-ebooks.info

http://www.it-ebooks.info/

LCD displays use the light modulating properties of liquid crystals. In a standard LCD

display, a layer of molecules are aligned between two transparent Tin Oxide electrodes and

two polarising filters placed at right angles to each other, as shown in Figure 1.9. Ambient

light enters the LCD through the front polarising filter. The light then passes through the

liquid crystals, which rotate the light passing through them. This rotation is usually 90

degrees in most type of LCDs. In the OFF state, since the light is rotated, it passes through

the second polarising filter. Applying a voltage across the electrodes (ON state) orients the

liquid crystals so that they are parallel to the electric field and the twisted structure disap-

pears. Thus, the light is no longer rotated and light passing through the second polariser in the

crossed shape is absorbed, thus causing the activated portion of the display to appear dark.

LCD displays can be classified as Passive Matrix and Active Matrix, depending upon the

pixel addressing scheme used. A pixel matrix is addressed by rows and columns. In a passive

display, transistors are used to activate rows and columns, not each pixel. In an active dis-

play, on the other hand, transistors are used at each red, green and blue pixel to keep the pixel

at the desired intensity. In general, passive matrix displays are less costly and have narrower

viewing angles than active matrix displays. Active matrix displays are sharper, have more

contrast than passive displays, and also have faster response times.

There are many types of LCD displays, depending upon the amount and type of twisting

used in liquid crystals. Some examples are: TN (Twisted Nematic �90� Twist), STN (Super-

twisted Nematic �270� Twist), FSTN (Film Compensated STN), DSTN (Double Layer

STN), and so on.

One of the LCD displays that has become popular recently is the (TFT (Thin Film Tran-

sistor) LCD, used in most mobile phones, laptop monitors and desktop computer monitors.

TFT is an active matrix display providing the best resolution of all the LCD types, but it is

also the most expensive type. In a TFT display, the transistors are made from a thin film of

amorphous silicon deposited on a glass panel. TFT displays offer excellent response times,

and sharp and crisp images. Some TFT displays are incorporated with touch screen hard-

ware panels that enable the user to make a selection by touching the appropriate places on

the screen.

Figure 1.9 Operation of an LCD

14 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

1.4.4.1 LCD Viewing Modes

Reflective: In this mode, LCDs use ambient light to illuminate the display and are therefore

more suitable for outdoor use.

Transmissive: In this mode, LCDs use ambient light to illuminate the display and are

therefore more suitable for indoor use.

Transflective: Transflective mode includes both reflective and transmissive types, so can

be used both indoors and outdoors.

1.4.4.2 Key Specifications of LCDs

Resolution: Number of pixels, measured in horizontal and vertical (e.g. 1024� 768);

View size: The diagonal size of the LCD display;

Dot pitch: The distance between two adjacent same colour pixels. The dot pitch is either

specified as the number of dots per inch, or the distance is given in millimetres (e.g.

0.25mm). The smaller the dot pitch size (or higher the number of dots per inch), the sharper

the image becomes;

Response time: The minimum time it takes to change a pixel’s brightness (or colour). The

response time is measured in milliseconds and typical values are several milliseconds. A low

response time is always desirable;

View angle: The angle from which the LCD can be viewed without loss of any detail;

Brightness: The amount of light emitted from the display;

Contrast ratio: The ratio of the luminance of the brightest colour (white) to that of the

darkest colour (black). A high contrast ratio is a desirable feature of any display;

Aspect ratio: The ratio of the width of the LCD to its height (e.g. 16: 9, 4: 3, etc.)

1.5 Summary

This chapter has provided an introduction to the microcontroller and microprocessor based

computer systems. The differences between the two types of computer systems have been

explained in detail. In addition, some of the most commonly used concepts in microcontrol-

lers have been described.

The final part of the chapter has provided an introduction to the display systems used in

microcontroller based applications. An explanation of the important terms used in displays

has also been given.

Exercises

1.1 What is a microprocessor?

1.2 What is a microcontroller? Explain the differences between a microprocessor and a

microcontroller.

1.3 Where would you use a flash memory?

1.4 Where would you use RAM memory?

1.5 What is an A/D converter? Give an example for its use in a microcontroller based

application.

1.6 What is the purpose of the watchdog module in a microcontroller?

Introduction to Microcontrollers and Display Systems 15

www.it-ebooks.info

http://www.it-ebooks.info/

1.7 What happens when a microcontroller is reset?

1.8 How many types of LCDs are there? Which one would you choose if the number of

I/O ports is limited?

1.9 What is a graphics LCD? Give an example for its use in practise.

1.10 Explain the operation of passive and active display technologies.

1.11 What is a TFT display? Why are TFT displays popular? In which type of applications

are they commonly used?

1.12 What is an OLED display? Explain its operation. What are the differences between a

TFT and an OLED display?

1.13 What are the advantages of touch screen displays? Give an example of touch screen

based application.

16 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

2

PIC18F Microcontrollers

PIC is a family of Harvard architecture microcontrollers (except the 32-bit devices) manu-

factured by Microchip Technology Inc. PIC microcontrollers are available in over 1000 mod-

els. Depending upon the data width used, we can classify these microcontrollers in three

groups: 8-bit, 16-bit and 32-bit microcontrollers. Figure 2.1 shows an overview of the PIC

series of microcontrollers.

The PIC 10, 12, 16 series are the low-end 8-bit microcontrollers with low speed, low pin

count, low cost, small memories, with only 35 instructions, making them easy to learn and

program. PIC18 series are medium-end 8-bit microcontrollers with medium speed, higher

pin count, large memories, and having over 80 instructions. These microcontrollers include

various on-chip modules, such as CAN, USB, SPI, multiple USARTs, several timers, multi-

plier hardware, and clock speeds up to 40MHz. These microcontrollers are currently used in

most new complex PIC microcontroller projects. PIC24 and dsPIC series are 16-bit high-

speed microcontrollers with large memories and peripheral support, designed for time-

critical applications where real-time processing is very important. These microcontrollers

find applications in digital signal processing (DSP) and in high-speed automatic digital con-

trol systems. The architectures of these 16-bit microcontrollers are different to the 8-bit

microcontrollers, as they are configured for high-speed processing required in DSP applica-

tions, having fast multiplication and addition modules (MACs).

The new PIC32 microcontroller family are 32-bit processors with standard Von Neumann

architecture, having large memories and peripheral support, offering very high speed proc-

essing in highly precision applications. One of the advantages of PIC microcontrollers is that

they support easy migration across product families. For example, a project designed using a

PIC16 series microcontroller can easily be upgraded to use a PIC18 series microcontroller.

This is especially true if the development was carried out using a high-level language such as

C, which is compatible across all the 8-bit families.

Currently, most medium-speed general purpose projects with graphical display require-

ments are based on the PIC18F series, as they provide the required speed, large data and

program memories, and large number of input-output capabilities.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

PIC18 microcontrollers are available in many models, from small 18-pin chips to 100-pin

chips, program memories from 4KB to 128KB, data memories from 256 bytes to 4KB, and

input-output pins from 15 to 70.

In this chapter we look in detail at the architecture of a medium-end PIC18 microcontrol-

ler, namely the PIC18F2410, as it will be necessary to know the basic architecture of the

PIC18 series of microcontrollers when we begin creating display based projects in later

chapters. The reason for choosing the PIC18F2410 is because it is a low-cost, yet powerful

microcontroller, having only 28 pins, and its architecture can be considered as representative

of the PIC18F series.

2.1 The PIC18F2410 Microcontroller

The PIC18F2410 microcontroller belongs to the family PIC18F2X1X/4X1X. There are 8

microcontrollers in this family, with slightly different specifications. Table 2.1 gives the

basic specifications of the microcontrollers in this family.

The basic features of the PIC18F2410 microcontroller are:

� 16KB program memory;
� 768 bytes data memory;

Figure 2.1 PIC microcontroller series

Table 2.1 The PIX18F2X1X/4X1X microcontroller family

Device

Program

memory

Data

memory

Interrupt

Sources I/O Timers

A/D

converter USART Package

PIC18F2410 16 KB 768 18 25 4 10 ch 1 28

PIC18F2510 32 KB 1536 18 25 4 10 ch 1 28

PIC18F2515 48 KB 3968 18 25 4 10 ch 1 28

PIC18F2610 64 KB 3968 18 25 4 10 ch 1 28

PIC18F4410 16 KB 768 19 36 4 13 ch 1 40/44

PIC18F4510 32 KB 1536 19 36 4 13 ch 1 40/44

PIC18F4515 48 KB 3968 19 36 4 13 ch 1 40/44

PIC18F4610 64 KB 3968 19 36 4 13 ch 1 40/44

18 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� 25 I/O pins;
� each I/O pin has 25mA source/sink capability;
� 10-bit 10 channel A/D converters;
� 18 interrupt sources;
� interrupt priority levels;
� 4 timers;
� DC to 40MHz operating frequency;
� capture/compare/PWM modules;
� USART module;
� master synchronous serial port module (MSSP);
� low-voltage detection module (LVD);
� power-on reset (POR), power-up timer (PWRT), oscillator startup timer (OST);
� watchdog timer (WDT);
� 75 instructions (83 with extended instruction set enabled);
� 20 nA current consumption in sleep mode (CPU and peripherals off);
� 28-pin package.

2.2 PIC18F2410 Architecture

The pin configuration (DIP package) of the PIC18F2410 microcontroller is shown in Figure 2.2.

As we shall see later, most of the pins are multiplexed and can be used for different purposes.

For example, pin 2 is named as RA0/AN0 and this is the PORTA least significant port pin. This

pin can be used as an analogue input (named AN0), or as a digital I/O (named RA0).

Figure 2.3 shows the simplified internal architecture of the PIC18F2410 microcontroller.

The CPU is at the centre of the diagram and consists of an 8-bit ALU, an accumulator regis-

ter (WREG), and an 8� 8 multiplier module. The multiplier takes data from the accumulator

register and the data bus, and provides the 16-bit result in registers PRODH and PRODL,

where the result can be read through the data bus.

Figure 2.2 PIC18F2410 pin configuration (DIP package). (Reproduced with permission from

Microchip Inc)

PIC18F Microcontrollers 19

www.it-ebooks.info

http://www.it-ebooks.info/

The program memory and the program counter are shown at the top left corner of the figure.

The memory address consists of 21 bits, capable of addressing up to 2MB of memory data,

although here only 16KB is used. The program counter consists of two 8-bit registers PCH

and PCL, and a 5-bit register PCU. A 32-level deep stack can be seen at the bottom of the

program counter. The stack is used to store the return addresses when a subroutine is called or

Figure 2.3 Internal architecture of the PIC18F2410 microcontroller. (Reproduced with permission

from Microchip Inc)

20 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

when an interrupt occurs. The stack is independent of the data memory and is addressed with a

5-bit stack pointer STKPTR. The stack pointer is initialised to 00 000 after a reset.

The data memory can be seen at the top right corner of the figure. The data addresses are

12 bits, thus up to 4KB data can be addressed, although here only 768 bytes of data memory

are implemented.

The instruction decode and control logic, located at the centre of the figure, decodes the

instructions fetched from the program memory and sends the appropriate control signals to

all parts of the microcontroller to implement the required operation.

Just below the instruction decode and control logic, we see the timing and power control

module. This module is responsible for generating the clock timing pulses for both the exter-

nal and internal clock. In addition, this module controls the power-on timer, oscillator

startup, POR, watchdog timer, brown-out reset, single-supply programming, in-circuit

debugger, and the fail safe clock monitoring.

At the bottom of the figure we can see the four timer modules, comparator/capture/pwm

modules, master synchronous serial port module (MSSP), USART module, and the A/D con-

verter module.

There are 4 I/O ports named PORTA, PORTB, PORTC and PORTE, and 25 I/O pins

shown at the right side of the figure. PORTA, PORTB and PORTC are 8-bit ports, while

PORTE has only 1 bit. All ports pins are bi-directional when configured as digital I/O.

2.2.1 The Program Memory

Figure 2.4 shows a memory map of the PIC18F2410 microcontroller. The device has a 21-bit

program counter (PC <20: 0>), capable of addressing up to 2MB of memory, although here

only 16KB is used, ranging from 00 000 h to 03 FFFh. Memory addresses above 0400 h are

read as 0 and are not available. The Reset vector is at address 00 000 h and the program

counter is loaded with this address after a reset, causing the program starting at this address

to be executed. Addresses 00 008 h and 00 018 h are the high and low priority interrupt vec-

tors, respectively. Thus, for example, when a low priority interrupt occurs, the program

jumps to address 00 008 h.

An instruction cycle in an 8-bit PIC microcontroller consists of 4 cycles (Q1 to Q4). A

fetch cycle begins with the program counter incrementing in Q1. The fetched instruction is

decoded and executed in cycles Q2, Q3 and Q4. A data memory location is read during the

Q2 cycle and written during the Q4 cycle. Because an instruction cycle consists of 4 cycles,

the performance of a PIC microcontroller is measured by dividing the operating clock fre-

quency by 4. For example, a processor operating with a 40MHz clock frequency has a MIPS

(Million Instructions Per Second) rating of 10 MIPS.

2.2.2 The Data Memory

Figure 2.5 shows the data memory of the PIC18F2410 microcontroller. Data memory is

addressed with 12 bits, capable of addressing up to 4 KB of memory. The memory is usually

divided into 16 banks, each bank 256 bytes long. The PIC18F2410 microcontroller uses only

the first 3 banks (BANK 0, BANK 1 and BANK 2) from address 000 h to 2 FFh. The remain-

ing banks, except half of BANK 15, are not used and return 0 when accessed. The upper part

PIC18F Microcontrollers 21

www.it-ebooks.info

http://www.it-ebooks.info/

of BANK 15 is reserved for the SFR (Special Function Registers) registers. SFR registers

control internal modules of the microcontrollers, such as A/D converter, interrupts, timers,

USART, I/O ports, and so on.

2.2.3 Power Supply Requirements

The PIC18F2410 microcontroller operates with a power supply of 4.2 to 5.5 V, at the full

speed of 40MHz. The low-power version of the microcontroller (PIC18LF2410) can operate

at a voltage as low as 2.0V. As shown in Figure 2.6, at low voltages the maximum operating

frequency is limited. For example, at 2.0 V the maximum operating frequency should not

exceed 4MHz. In practical applications, most microcontrollers are operated with a supply of

5.0V, derived using a 78L05/7805 or a similar voltage regulator.

Figure 2.4 Program memory map of the PIC18F2410 microcontroller. (Reproduced with permission

from Microchip Inc)

22 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2.5 Data memory map of the PIC18F2410 microcontroller. (Reproduced with permission

from Microchip Inc)

PIC18F Microcontrollers 23

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.4 Oscillator Configurations

The PIC18F2410 microcontroller can be operated in 10 different oscillator modes. The user

can program the required oscillator mode during programming of the device. These modes are:

� low-power crystal (LP);
� Crystal/Resonator (XT);
� high-speed crystal/resonator with PLL enabled (HSPLL);
� external resistor-capacitor with Fosc/4 on OSC2 (RC);
� external resistor-capacitor with I/O on OSC2 (RCIO);
� internal oscillator with Fosc/4 on OSC2 and I/O on OSC1 (INTIO1);
� internal oscillator with I/O on OSC2 and OSC1 (INTIO2);
� external clock with Fosc/4 output on OSC2(EC);
� external clock with I/O on OSC2 (ECIO).

2.2.4.1 Using Crystal (LP/XT)

A crystal should be used in applications requiring high timing accuracies. The crystal is

connected to pins OSC1 and OSC2 of the microcontroller with a pair of capacitors, as shown

in Figure 2.7. That capacitor value depends on the oscillator mode and is shown in Table 2.2.

In most applications, a 15–33 pF capacitor should be sufficient to achieve stability.

2.2.4.2 Using Resonator (XT)

A resonator should be used in low-cost applications where high timing accuracy is not

essential. Resonators are available at low to medium frequencies, up to 10MHz. The reso-

nator should be connected to pins OSC1 and OSC2 of the microcontroller, as shown in

Figure 2.8.

Figure 2.6 Power supply requirements. (Reproduced with permission from Microchip Inc)

24 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.4.3 Using External Resistor-Capacitor (RC/RCIO)

Using an external resistor-capacitor (RC) for timing provides the cheapest solution. Here, the

clock frequency depends on the chosen resistor and capacitor values, component tolerances,

Figure 2.7 Operation with a crystal

Table 2.2 Required capacitor values

Mode Frequency C1,C2 (pF)

LP 32 kHz 33

200 kHz 15

XT 200 kHz 22–68

1.0MHz 15

4.0MHz 15

HS 4.0MHz 15

8.0MHz 15–33

20.0MHz 15–33

25.0MHz 15–33

PIC18F Microcontrollers 25

www.it-ebooks.info

http://www.it-ebooks.info/

power supply, temperature, and ageing of components. The clock frequency is not accurate

and can easily change from unit to unit due to component tolerances.

Table 2.3 gives the approximate clock frequency with different RC combinations. The

resistor should be between 3K and 100K, and the capacitor should be greater than 20 pF.

Figure 2.8 Operation with a resonator

Table 2.3 Selecting a resistor and capacitor

C (pF) R (K) Frequency (MHz)

22 3.3 3.3

4.7 2.3

10.0 1.08

30 3.3 2.4

4.7 1.7

10.0 0.793

26 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The clock frequency is given approximately by

f ¼ 1=ð4:2 RCÞ ð2:1Þ

As an example, for a 2MHz clock, we can choose a capacitor of 30 pF and a resistor of

3.9K. Figure 2.9 shows the circuit diagram for RC mode operating at approximately 2MHz.

Notice that in RC mode, a clock is output from pin OSC2 with a frequency of Fosc/4, that is

500Hz in this example.

The RCIO mode is similar to the RC mode, except that in RCIO mode the OSC2 pin is

available as a general purpose I/O.

2.2.4.4 Using the Internal Oscillator (INTIO1/INTIO2)

An internal oscillator can be extremely useful in many applications. First, it eliminates the

need to use an external timing device, thus reducing the cost and the component count. Sec-

ond, by using an internal oscillator, the microcontroller oscillator pins become available for

general purpose I/O.

PIC18F2410 includes two internal oscillators. A factory calibrated 8MHz clock source

(IINTOSC), and an RC based 31 kHz clock source (INTRC). In the INTIO1 mode, the

OSC2 pin outputs a clock at frequency Fosc/4, while the OSC1 pin (RA7) can be used as

general digital I/O. In the INTIO2 mode, both OSC1 and OSC2 pins function as general

purpose I/O pins (RA6 and RA7).

Although the 8MHz clock source is factory calibrated, the frequency can drift slightly and

the SFR register OSCTUNE can be used to re-calibrate this clock source (see manufacturers’

data sheet for more information). The 8MHz clock drives a postscaler, and a multiplexer is

used to provide clock frequencies in the range 31 kHz to 8MHz.

Figure 2.10 shows the internal structure of the clock selection mechanism. SFR register

OSCCON controls the clock selection, as shown in Figure 2.11. For example, to select an

4MHz internal clock, bits <6: 4> of OSSCON should be set to binary pattern ‘110’.

Figure 2.9 Operation with a resistor-capacitor

PIC18F Microcontrollers 27

www.it-ebooks.info

http://www.it-ebooks.info/

The PIC18F2410 microcontroller includes a feature that allows the device clock source to

be switched from the main oscillator to an alternative lower frequency clock source for con-

serving power. Essentially, there are two clock sources: Primary oscillator and Secondary

oscillator. The primary oscillator includes the external crystal and resonator modes, external

RC modes, and the internal oscillator. The Secondary oscillator is where Timer 1 is used as

an internal oscillator.

2.2.4.5 Using External Clock (EC/ECIO)

In this mode of operation, an external clock source is connected to pin OSC1 of the micro-

controller. In EC mode, pin OSC2 (RA6) provides a clock output at the frequency Fosc/4. In

ECIO mode, pin OSC2 (RA6) is available as a general purpose I/O. Figure 2.12 shows oper-

ation with an external clock.

2.2.4.6 High-speed Crystal/resonator with PLL (HSPLL)

High-speed operation is possible using the Phase Locked Loop (PPL) to multiply the

selected clock source by 4. The PLL operation is available either with the external crystal/

resonator (HSPLL), or by using the internal clock.

In the HSPLL mode of operation, an external crystal or resonator is connected to the

OSC1 and OSC2 pins, as in mode XT. The internal PLL of the microcontroller is then pro-

grammed to multiply the clock frequency by 4 to provide higher frequencies. External crys-

tal/resonator up to 10MHz can be used in this mode, to provide an operating frequency of

40MHz. Bits FOSC3:FOSC0 of the Configuration register 1H are used to set the HSPLL

mode (see manufacturers’ data sheet for more information).

Figure 2.10 Clock selection mechanism. (Reproduced with permission from Microchip Inc)

28 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

When used with the internal clock sources, the PLL can produce clock speeds of 16MHz

(with a 4MHz internal clock) or 32MHz (with an 8MHz internal clock). The PLL for the

internal clock sources is enabled by setting bit 6 of the SFR register OSCTUNE, as shown in

Figure 2.13.

Figure 2.11 OSCCON register bit definitions. (Reproduced with permission from Microchip Inc)

Figure 2.12 Operation with an external clock

PIC18F Microcontrollers 29

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.5 The Reset

The Reset action puts the microcontroller into a known state, where the program counter is

loaded with address 0 and program execution starts from this address. There are several

actions that may cause a reset action:

� Power-on Reset (POR);
� MCLR Reset during normal operation;
� MCLR Reset during power-managed modes;
� Watchdog Timer (WDT) Reset;
� Programmable Brown-out Reset (BOR);
� Reset instruction;
� Stack full Reset;
� Stack underflow Reset.

In this section we are interested in the most commonly used reset actions: Power-on Reset

and MCLR Reset during normal operation.

2.2.5.1 Power-on Reset

A Power-on Reset (POR) is generated when power is applied to the microcontroller and

when the supply voltage rises above a certain threshold. During POR, internal parts of the

microcontroller are initialised. The MCLR pin should be connected to the supply voltage

Figure 2.13 OSCTUNE register bit definitions. (Reproduced with permission from Microchip Inc)

30 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

with a 1K to 10K resistor before the POR is enabled. Figure 2.14 shows a typical POR

circuit, where the MCLR pin is connected to the supply voltage via a 10K resistor. In appli-

cations where the rise time of the supply voltage is small, it is recommended to use a diode

and a capacitor in the POR circuit, as shown in Figure 2.15.

2.2.5.2 External Reset

In some applications we may want to force an external reset action, for example by pressing

a button. This can easily be arranged by the circuit shown in Figure 2.16. The MCLR pin is

normally at logic HIGH during normal operation. Pressing the button forces MCLR to be

LOW, which causes a reset action.

2.2.6 Parallel I/O Ports

The PIC18F2410 microcontroller supports 4 I/O ports named PORT A, PORT B, PORTC

and PORT E. The first three ports are 8-bits wide, while PORT E has only 1 bit. The bits of a

Figure 2.14 Power-on Reset circuit

PIC18F Microcontrollers 31

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2.15 Power-on circuit for slow rising supply voltage

Figure 2.16 External Reset circuit

32 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

port are named as RPn, where P is the port name, and n is the bit number. For example, RB0

is bit 0 of PORT B. Similarly, RA7 is bit 7 of PORTA, and so on.

The I/O ports are bi-directional. An input port pin can easily be changed to

become an output pin, and vice versa. Port pin directions must be configured before

they are used. The SFR register TRIS is used to configure the port directions. Each

port register has a corresponding TRIS register. Thus, for example, the TRIS register

for PORT A is TRISA, the TRIS register for PORT B is TRISB, and so on. Clearing

a bit in a TRIS register forces the corresponding port pin to become an output. Simi-

larly, setting a bit in a TRIS register forces the corresponding port pin to become an

input. For example, to configure pins 0, 1, 3 of PORT B to become output and the

remaining pins to become input, we have to load the following values into the TRISB

register:

7 6 5 4 3 2 1 0
1 1 1 1 0 1 0 0

TRISB = 0xF4;

In addition to the standard port registers, every port has a latch register. This register is

called LATx, where x is the port name. For example, PORT A latch register is LATA,

PORT B latch register is LATB, and so on. The latch register holds the actual value sent to

a port pin. Thus, for example, when reading from a port pin, we have two choices. If we

read from the latch register, then the value read is unaffected by any external device con-

nected to the port pin. If, on the other hand, the port pin is pulled low (even though a logic

HIGH was sent to the port) by an externl device, then reading the port register will give a

HIGH value.

2.2.6.1 PORT A

PORTA is an 8-bits wide, parallel I/O port, with the pin configuration shown in Table 2.4. As

shown, the port pins are multiplexed and can be used for different purposes. Most of the

PORTA pins can be configured either as digital I/O or as analogue inputs. This port has the

following registers associated with it:

� PORTA register.
� TRISA register.
� LATA register.

Register PORTA is used to write and read data from the port pins. TRISA register is used

to set the port pin directions. LATA is the latch register used to read a latched output value

from the port.

Figure 2.17 shows the simplified internal block diagram of a generic port pin without the

peripheral functions. The port pin consists of three D-type latch registers and a number of

buffers. The output and input operations are described:

PIC18F Microcontrollers 33

www.it-ebooks.info

http://www.it-ebooks.info/

Output: TRIS register is loaded with logic 0, thus the Q output of TRIS Latch is 0, ena-

bling the output buffer to the I/O pin. If a data is now placed on the D input of the data latch,

this data appears as the output of the port pin.

Input using port input: TRIS register is loaded with logic 1, thus the Q output of TRIS

Latch is 1, disabling the output buffer to the I/O pin. To read data from the I/O pin, the RD

Port pin is set to logic 1, thus enabling the input latch and placing the input data on the

data bus.

Input using LATx register: TRIS register is loaded with logic 1, thus Q output of TRIS

Latch is 1, disabling the output buffer to the I/O pin. Setting pin RD LAT to 1 reads the data

Table 2.4 PIC18F2410 microcontroller PORTA pin functions

Pin Description

RA0/AN0

RA0 Digital I/O

AN0 Analogue input 0

RA1/AN1

RA1 Digital I/O

AN1 Analogue input 1

RA2/AN2/VREF-/CVREF

RA2 Digital I/O

AN2 Analogue input 2

VREF� A/D reference voltage (low) input

CVREF Comparator reference output

RA3/AN3/VREFþ
RA3 Digital I/O

AN3 Analogue input 3

VREFþ A/D reference voltage (high) input

RA4/T0CKI/C1OUT

RA4 Digital I/O

T0CKI Timer 0 external clock input

C1OUT Comparator 1 output

RA5/AN4/SS/HLVDIN/C2OUT

RA5 Digital I/O

AN4 Analogue input 4

SS SPI Slave Select input

HLVDIN High/Low voltage detect input

C2OUT Comparator 2 output

RA6/OSC2/CLKO Digital I/O

RA6 Digital I/O

OSC2 Oscillator input

CLKO Clock output

RA7/OSC1/CLKI Digital I/O

RA7 Digital I/O

OSC1 Oscillator input

CLKI Clock input

34 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

at the output of the data latch and places it on the data bus. Remember that the data read here

is the actual data sent to the port output earlier, and this data is not affected by any devices

connected to the I/O pin.

On POR, PORT A pins RA5 and RA3:RA0 are configured as analogue inputs. Pin RA4

is configured as digital input. SFR register ADCON1 can be used to change the port config-

uration. For example, setting ADCON1 to 0� 7F configures all PORT A pins to become

digital.

2.2.6.2 PORT B

PORT B is an 8-bit parallel port with the pin configuration shown in Table 2.5. As with

PORTA, all the PORT B pins are multiplexed with other functions, such as analogue inputs

and interrupt inputs.

As in PORTA, PORT B has the following registers associated with it:

� PORTB register.
� TRISB register.
� LATB register.

Figure 2.17 Generic port pin without peripheral functions. (Reproduced with permission from

Microchip Inc)

PIC18F Microcontrollers 35

www.it-ebooks.info

http://www.it-ebooks.info/

On POR, PORT B pins RB4:RB0 are configured as analogue inputs and RB7:RB5 pins are

configured as digital inputs. Configuration register PBADEN or SFR register ADCON1 can

be programmed to change the PORT B pin configuration. For example, when PBADEN is set

to 1, all pins with analogue functions are set to analogue input mode.

2.2.6.3 PORT C

PORT C is also an 8-bit bi-directional port with multiplexed pins. The pin configuration of

PORT C is shown in Table 2.6. Most points of PORT C are multiplexed with timer, USART

and SPI bus functions.

Table 2.5 PIC18F2410 microcontroller PORT B pin functions

Pin Description

RB0/INT0/FLT0/AN12

RB0 Digital I/O

INT0 External interrupt 0

FLT0 PWM fault input for CCP1

AN12 Analogue input 12

RB1/INT1/AN10

RB1 Digital I/O

INT1 External interrupt 1

AN10 Analogue input 10

RB2/INT2/AN8

RB2 Digital I/O

INT2 External interrupt 2

AN8 Analogue input 8

RB3/AN9/CCP2

RB3 Digital I/O

AN9 Analogue input 9

CCP2 Capture 2 input, Compare 2 and PWM2 output

RB4/KBIO/AN11

RB4 Digital I/O

KBIO1 Interrupt on change input

AN11 Analogue input 11

RB5/KBI1/PGM

RB5 Digital I/O, Interrupt on change pin

KBI1 Interrupt on change input

PGM Low voltage ICSP programming pin

RB6/KBI2/PGC

RB6 Digital I/O, Interrupt on change pin

KBI2 Interrupt on change input

PGC In-circuit debugger and ICSP programming pin

RB7/KBI3/PGD

RB7 Digital I/O, Interrupt on change pin

KBI3 Interrupt on change input

PGD In-circuit debugger and ICSP programming pin

36 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

As in the other ports, PORT C has the following registers associated with it:

� PORT C register.
� TRISC register.
� LATC register.

On power-on, all pins of PORT C are configured as digital inputs.

2.2.6.4 PORT E

On the PIC18F2410 microcontroller, PORT E is a single bit input only port, multiplexed with

the MCLR (reset pin) and VPP (programming voltage pin) functions, and is available when

MCLRE¼ 0.

Table 2.6 PIC18F2410 microcontroller PORT C pin functions

Pin Description

RC0/T1OSO/T13CKI

RC0 Digital I/O

T1OSO Timer 1 oscillator output

T13CKI Timer 1/Timer 3 external clock input

RC1/T1OSI/CCP2

RC1 Digital I/O

T1OSI Timer 1 oscillator input

CCP2 Capture/compare/PWM 2 output

RC2/CCP1

RC2 Digital I/O

CCP1 Capture/compare/PWM 1 output

RC3/SCK/SCL

RC3 Digital I/O

SCK Clock for SPI mode

SCL Clock for I2C mode

RC4/SDI/SDA

RB4 Digital I/O

SDI SPI data in

SDA I2C data I/O

RC5/SDO

RC5 Digital I/O

SDO SPI data out

RC6/TX/CK

RC6 Digital I/O

TX USART transmit

CK USART synchronous clock

RC7/RX/DT

RC7 Digital I/O

RX USART receive

DT USART synchronous data

PIC18F Microcontrollers 37

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.7 Timer Modules

PIC18F2410 microcontroller includes 4 timer modules, TIMER 0, TIMER 1, TIMER 2

and TIMER 3. The structure and the operation of each timer are briefly described in this

section.

2.2.7.1 TIMER 0

TIMER 0 operates in both 8- and 16-bit modes. The timer can be clocked from external or

internal clock sources. An 8-bit programmable prescaler is provided to divide the clock fre-

quency. An interrupt on overflow event can be declared so that an interrupt is generated

whenever the timer overflows.

2.2.7.1.1 8-bit Mode
Figure 2.18 shows TIMER 0 block diagram when operating in 8-bit mode. The external

clock input is the T0CKI pin. The internal clock is derived by dividing the oscillator fre-

quency by 4.

Operation of TIMER 0 is controlled by SFR register T0CON. Figure 2.19 shows the bit

definitions of T0CON.

The prescaler value can be selected between 2 and 256, using bits T0PS2:T0PS0 of

T0CON. TMR0L is the timer register when operating in 8-bit mode. The register counts up

at every clock pulse and overflows when the count changes from 255 to 0. A timer interrupt

is generated after an overflow, if the timer interrupt is enabled.

The time to overflow is calculated using the following equation:

Time to overflow ¼ 4 � Clock period � Prescaler � ð256� TMR 0LÞ ð2:2Þ

where

time to overflow is in ms;
clock period is in ms;
TMR0L is the initial value loaded (0 to 255) into register TMR0L.

Figure 2.18 TIMER 0 block diagram in 8-bit operation. (Reproduced with permission from

Microchip Inc)

38 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if we assume an 8MHz clock, and the prescaler is chosen as 16 by setting bits

PS2:PS0 to 011, and also assume that the timer register is loaded with decimal 100, the time

to overflow will be given by:

Clock period is T = 1/f = 1/8 = 0.125 μs

Time to overflow = 4 * 0.125 * 16 * (256 - 100) = 1248 μs

Thus, the timer will overflow after 1.248ms.

In most applications we want to know what value to load into TMR0L for a required time

to overflow. Re-arranging the above equation, we get

TMR0L ¼ 256� ðTime to overflowÞ=ð4 � Clock period � PrescalerÞ ð2:3Þ
An example is given below.

Example 2.1

It is required to generate a timer overflow after 500 ms using TIMER 0. Assuming that the clock fre-

quency is 8MHz, and the prescaler value is 16, calculate the value to be loaded into timer registers.

Figure 2.19 T0CON bit definitions. (Reproduced with permission from Microchip Inc)

PIC18F Microcontrollers 39

www.it-ebooks.info

http://www.it-ebooks.info/

Solution 2.1
Using the above formula we get

TMR0L ¼ 256� ð500Þ=ð4 � 0:125 � 16Þ ¼ 193:5 ð2:4Þ

The closest integer is 193. Thus, the timer registers will be loaded as follows:

TMR0L = 193 // Timer value

T0CS = 0; // Select internal clock

T0PS2 = 0; // Set prescaler to 16

T0PS1 = 1; // ..

T0PS0 = 1; // ..

PSA = 0; // Select prescaler

2.2.7.1.2 16-bit Mode
Figure 2.20 shows the TIMER 0 block diagram when operating in 16-bit mode. In this mode

there are two timer registers, TMR0H and TMR0L. The timer high byte is not directly acces-

sible and is updated with the help of register TMR0H. All 16 bits of the timer is updated at

once. To read the 16-bit timer value, we first read the low byte TMR0L, and during this

operation the high byte is loaded into register TMR0H, which can be read in a second read

operation. Similarly, to write a 16-bit value to the timer register, we first write the high byte

into TMR0H. Then, when the low byte is written to TMR0L, both TMR0L and TMR0H are

written to the timer.

2.2.7.2 TIMER 1

TIMER 1 is a 16-bit timer that can be operated as either a timer or a counter. SFR register

T1CON controls TIMER 1, as shown in Figure 2.21. When operated as a timer, TMR1CS bit

of T1CON is low, thus selecting the internal oscillator (Fosc/4). When TMR1CS is high,

external clock from pin T1OSO is selected as the clock source.

Figure 2.20 TIMER 0 block diagram in 16-bit operation. (Reproduced with permission from

Microchip Inc)

40 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

When bit T1OSCEN is high, an internal oscillator is enabled. This oscillator is intended

for 32 kHz real-time clock operation, although it can operate up to 200 kHz by connecting a

crystal between pins TIOSI and TIOSO. A prescaler is available, as in TIMER 0, but with

only 1, 2, 4 and 8 values.

Bit RD16 controls whether the timer is loaded in one 16-bit operation, or in two 8-bit

operations. When RD16 is high, the timer is loaded, as in TIMER 0 16-bit mode. When

RD16 is low, the timer is loaded as two 8-bit operations. Figure 2.22 shows the block dia-

gram of TIMER 1.

2.2.7.3 TIMER 2

TIMER 2 is an 8-bit timer, controlled with SFR register T2CON. This timer has a 1: 16

prescaler, and also a 1: 16 postscaler. Figure 2.23 shows the bit definitions of T2CON.

An SFR register called PR2 is loaded with an 8-bit data, which is compared to timer regis-

ter TMR2. If the two registers are equal, then an interrupt is generated. This way, the timer

can be used to generate pulses at fixed time intervals. TIMER 2 is generally used for the

PWM and CCP operations. Figure 2.24 shows the block diagram of TIMER 2.

Figure 2.21 T1CON bit definitions. (Reproduced with permission from Microchip Inc)

PIC18F Microcontrollers 41

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2.22 Block diagram of TIMER 1. (Reproduced with permission from Microchip Inc)

Figure 2.23 T2CON bit definitions. (Reproduced with permission from Microchip Inc)

Figure 2.24 Block diagram of TIMER 2. (Reproduced with permission from Microchip Inc)

42 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.7.4 TIMER 3

The operation of TIMER 3 is similar to TIMER 1, except that TIMER 3 can operate as a

16-bit timer, as a synchronous counter, and also as an asynchronous counter. The timer is

controlled with SFR register T3CON, whose bit definition is shown in Figure 2.25.

2.2.8 Analogue-to-Digital Converter Module

The analogue to digital converter (A/D converter) module converts external analogue signals

into digital form, so that they can be processed by the microcontroller. In general, an A/D

converter can either be unipolar or bipolar. Unipolar A/D converters accept only positive

input signals, while bipolar A/D converters can accept both negative and positive input sig-

nals. Bipolar A/D converters are frequenctly used in real-time DSP applications.

Figure 2.25 T3CON bit definitions. (Reproduced with permission from Microchip Inc)

PIC18F Microcontrollers 43

www.it-ebooks.info

http://www.it-ebooks.info/

The PIC18F2410 microcontroller contains 10 unipolar A/D converter channels, each hav-

ing 10-bit resolution, that is 0 to 1023 steps. These A/D converters are usually operated from

a þ5V reference voltage, giving a step size of

ð5 V=1023Þ ¼ 4:89 mV ð2:5Þ

Thus, the minimum voltage change that can be detected using such an A/D converter is

4.89mV.

Figure 2.26 shows the block diagram of the PIC18F2410 A/D converter module. Although

there are ten channels, there is only one actual A/D converter and the analogue inputs are

multiplexed, only one channel being active at any given time.

SFR register ADCON0 is used to select a channel and start the actual conversion pro-

cess. Figure 2.27 shows the bit definitions of register ADCON0. Bits CHS3: CHS0 select

the analogue channel to be converted into digital. Bit ADON should be set to 1 to turn on

the A/D converter module. Bit GO/DONE is set to 1 to start the conversion. During the

Figure 2.26 Block diagram of the PIC18F2410 A/D converter. (Reproduced with permission from

Microchip Inc)

44 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

conversion process, this bit is cleared automatically and is set to 1 at the end of the

conversion.

SFR register ADCON1 is used to configure the I/O ports, either as digital or as analogue.

The bit definitions of ADCON1 are shown in Figure 2.28.

Bits VCFG1 and VCFG0 are used to select the negative and positive reference voltages. In

most applications, VCFG1 is set to VSS (i.e. ground) and VCFG0 is set to VDD (i.e. þ5V

reference voltage). Bits PCFG3:PCFG0 configure the analogue I/O ports. For example,

Figure 2.27 ADCON0 bit definitions. (Reproduced with permission from Microchip Inc)

Figure 2.28 ADCON1 bit definitions. (Reproduced with permission from Microchip Inc)

PIC18F Microcontrollers 45

www.it-ebooks.info

http://www.it-ebooks.info/

clearing all these bits configure all the ten channels as analogue inputs. Figure 2.29 shows the

PCFG3:PCFG0 bit definitions.

The A/D converter module has another SFR register called ADCON2, which is used to

select the A/D result format and the A/D clock frequency. The bit definitions of ADCON2

are shown in Figure 2.30. The high and low bytes of the converted data are stored in registers

ADRESH and ADRESL, respectively. Bit ADFM is an important bit. When set to 1, the A/D

converter result is right justified, and when cleared, the result is left justified, as shown in

Figure 2.31. In most applications, the result is right justified with zeroes filled in the upper

6 bits.

The A/D converter can be operated in two modes: polling, and interrupt driven. In polling

mode, a conversion is started, and the end-of-conversion status is checked continually until

the conversion is complete. In interrupt mode, an interrupt is generated as soon as the conver-

sion is complete. The interrupt driven mode offers a much higher response time, but is gener-

ally more difficult to configure.

The steps in carrying out an A/D conversion are as follows:

� Set TRIS of the corresponding channel to 1 to configure the channel for input.
� Configure ADCON1 accordingly, to configure the required I/O ports as analogue.
� Configure ADCON2 bits to select the result format and the conversion clock.
� Configure ADCON0 to turn on the A/D converter module and select the required channel.
� Configure A/D converter end-of-conversion interrupt (if required).
� Set the GO/DONE bit of ADCON0 to start conversion.
� Wait until GO/DONE bit is set, or until an interrupt is generated (if enabled).

Figure 2.29 PCFG3:PCFG0 bit definitions

46 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� Read the converted data into ADRESH and ADRESL.
� Repeat steps, as required for a new conversion.

It is important to take extra care when converting very fast varying analogue signals into

digital. A sample-and-hold amplifier may be needed to hold the signal from changing before

the conversion is started.

Figure 2.30 ADCON2 bit definitions. (Reproduced with permission from Microchip Inc)

Figure 2.31 A/D converter result formatting

PIC18F Microcontrollers 47

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.9 Special Features of the CPU

The PIC18F2410 microcontroller includes several features intended to maximise reliability

and minimise costs by eliminating the use of external components. Some of the important

features are the configuration registers and the watchdog timer.

The configuration registers are usually configured during physical programming of the

microconroller chip. These registers hold various important microcontroller features, such as

the oscillator modes, brown-out detector configuration, watchdog configuration, and so on. In

this section we look at the two most important configuration registers, CONFIG1H and CON-

FIG2H. Details of other configuration registers can be found in manufacturers’ data sheets.

CONFIG1H is used to select the microcontroller clock mode and the clock switching

logic. The bit definitions of this register are shown in Figure 2.32.

Configuration register CONFIG2H is used to configure the watchdog timer module. Fig-

ure 2.33 shows the bit definitions of this register. The watchdog is enabled by setting bit

WDTEN to 1. Bits WDTPS3:WDTPS0 select the watchdog timer postscaler bits. The range

can be selected from 1 to 32 768. The watchdog is clocked by the INTRC clock source. The

nominal watchdog period is 4ms. This value is multiplied by selecting a 16-bit postscaler

value. Thus, the timing ranges from 4ms to 4� 32 768ms, or 131.072 s (2.18min). If the

WDTEN bit is cleared, then the watchdog timer can be enabled in software by setting

bit SWDTEN of SFR register WDTCON. A soft reset action is performed if the watchdog

Figure 2.32 CONFIG1H bit definitions. (Reproduced with permission from Microchip Inc)

48 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

times out. The watchdog module is usually used in real-time and time-critical applications to

make sure that all time-critical applications complete their tasks in the specified times.

Figure 2.34 shows the block diagram of the watchdog timer module.

2.2.10 Interrupts

An interrupt is an external or internal event that requires the CPU to stop its normal execu-

tion and run a program related to the interrupting event. Internal interrupts are usually gener-

ated when a timer overflows, when the A/D conversion is complete, when a character is

Figure 2.33 CONFIG2H bit definitions. (Reproduced with permission from Microchip Inc)

Figure 2.34 Block diagram of the Watchdog timer module. (Reproduced with permission from

Microchip Inc)

PIC18F Microcontrollers 49

www.it-ebooks.info

http://www.it-ebooks.info/

received by the USART, and so on. External interrupts are usually generated when certain

pins of the microcontroller change state.

Interrupts can be useful in many applications, such as:

Servicing time critical applications. Real-time applications need immediate attention of the

CPU. For example, in signal processing applications, the CPU has to receive signals from

external sources whenever a signal is available. Also, for safety reasons, it may be

required to shut down a plant whenever there is power failure or fire. In such applications,

the CPU is required to stop whatever it is doing and service the interrupting device.

Performing scheduled tasks. There are many applications that require the CPU to perform

scheduled tasks, such as updating the real-time clock. These tasks are important and must

be serviced at the exact times.

Task switching. In many multi-tasking applications, it is required to service each task for a

certain amount of time. This is usually achieved using timer interrupts where each time an

interrupt occurs the running task is saved and a new task is started.

Preventing CPU from being tied up. In some applications, the CPU is required to perform

continuous checks of I/O devices. While performing these checks, the CPU cannot per-

form other duties. By moving the checking into interrupt routines, the checking can be

done in the background and the CPU is free to carry out other tasks. For example, a multi-

digit 7-segment display needs to be refreshed continuously. If this task is done in the main

program, then the CPU cannot do other tasks. By moving the refreshing operation into the

timer interrupt routine, the CPU is free to do other tasks.

The PIC18F2410 microcontroller has multiple interrupt sources, such as external inter-

rupts via port pins RB0 (INT0), RB1 (INT1), and RB2 (INT2), PORT B interrupt when any

of the pins RB4 to RB7 change state, Timer interrupts, A/D converter interrupts, USART

interrupts, and so on. The interrupt sources are divided into core interrupt sources and

peripheral interrupt sources. The core interrupt sources are the external interrupts and the

TMR0 interrupts. Peripheral interrupt sources are the other external and internal interrupt

sources. More details can be obtained from the manufacturer’s data sheets. In this book we

briefly look at the interrupt mechanisms.

There are 10 registers that control the interrupt operations:

� RCON.
� INTCON, INTCON2, INTCON3.
� PIR1, PIR2.
� PIE1, PIE2.
� IPR1, IPR2.

The interrupts can be divided into two categories: high-priority group and low-priority

group. If a certain device requires closer attention, then it should be set as a high-priority

device. If the priority is not important, then it is advisable to set all interrupts as low-priority.

The interupt priority feature is enabled by setting the IPEN bit of register RCON. If

IPEN¼ 0, then the interrupt feature is not enabled and the processor behaves as if all inter-

rupts are at the same priority group (this is the case with the PIC16 microcontroller family).

When the interrupt priority is enabled, two bits of register INTCON are used to enable

interrupts globally. The GIEH bit enables all interrupts whose priority bits are set. Setting

50 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

GIEL enables all interrupts whose priority bits are cleared. High-priority interrupts vector

to address 0� 0018, while the low-priority interrupts vector to address 0� 0008. Interrupt

sources have three bits to control their operation:

� A flag bit to indicate whether an interrupt has occured. This bit has a name ending in

. . . IF, e.g. TMR0IF;
� Enable bit to enable or disable an interrupt source. This bit has a name ending in . . . IE,

e.g. TMR0IE;
� A priority bit to select the interrupt priority. This bit has a name ending in . . . IP, e.g.

TMR0IP.

Figure 2.35 shows the bit definitions of register INTCON, which is the main interrupt

control register. The core interrupt sources are controlled by registers INTCON, INTCON2

and INTCON3. The bit definitions of INTCON2 and INTCON3 registers are given in

Figure 2.36 and Figure 2.37 respectively.

Figure 2.35 INTCON bit definitions. (Reproduced with permission from Microchip Inc)

PIC18F Microcontrollers 51

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2.36 INTCON2 bit definitions. (Reproduced with permission from Microchip Inc)

Figure 2.37 INTCON3 bit definitions. (Reproduced with permission from Microchip Inc)

52 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

2.2.10.1 Interrupts with Priority Disabled

When the interrupt priority feature is disabled, the following conditions must be satisfied for

an interrupt to be accepted by the processor:

� Disable priority feature, IPEN¼ 0.
� Set the GIE bit of INTCON.
� Clear the interrupt flag of the interrupt source.
� Enable the interrupt bit of the interrupting device. If the interrupt is from a core device, for

example the TMR0, then TMR0IE bit of INTCON must be set to 1. If the interrupt is from

a peripheral device, for example the A/D converter, then enable the PEIE bit of INTCON

as well as the device interrupt enable bit ADIE of the appropriate PIE register.

2.2.10.2 Interrupts with Priority Enabled

� Enable priority feature, IPEN¼ 1.
� Set bits GIEH and GIEL of INTCON.
� Clear the interrupt flag of the interrupt source.
� Set the priority level using the corresponding IPR register.
� Set the interrupt enable bit, using either INTCON, INTCON2, INTCON3 or PIEI registers.

As an example, the steps required to set TMR0 as a high-priority interrupt are:

� Enable the priority feature. Set IPEN¼ 1.
� Enable TMR0 interrupts. Set TMR0IE¼ 1.
� Enable TMR0 high priority. Set TMR0IP¼ 1.
� Clear TMR0 interrupt flag. Set TMR0IF¼ 0.
� Enable global interrupts. Set GIEH¼ 1.

2.2.11 Pulse Width Modulator Module

The pulse width modulator module (PWM) generates a PWM output waveform with 10-bit

resolution from certain pins of PIC microcontrollers. Some microcontrollers have only one

PWM module, while some others can have three or more. The PWM pin is identified by the

letters CCPx, where x is the number of the module (e.g. CCP1).

A PWM is basically a square wave signal with a specified period and duty cycle (see

Figure 2.38).

On the PIC18F2410 microcontroller there is only one PWM module, with its pin CCP1

shared with I/O port pin RC2. On this microcontroller, the PWM module timing is controlled

by Timer 2.

A PWM waveform has two parameters: the period and the duty cycle. Both of these

parameters must be programmed before the required waveform can be generated.

The PWM period is given by

PWM period ¼ ðPR2þ 1Þ � TMR2PS � 4 � TOSC ð2:6Þ

PIC18F Microcontrollers 53

www.it-ebooks.info

http://www.it-ebooks.info/

or

PR2 ¼ PWM period

TMR2PS � 4 � TOSC � 1 ð2:7Þ

where

PR2 is the value loaded into Timer 2 register.

TMR2PS is the Timer 2 prescaler value (2, 4 or 16).

TOSC is the clock oscillator period (seconds).

The duty cycle consists of 10 bits. The 8 most significant bits are loaded into the CCPR1L

register and the 2 least significant bits are loaded into bits 4 and 5 of the CCP1CON register.

The duty cycle (in seconds) is given by

PWM duty cycle ¼ ðCCPR1L : CCP1CON < 5 : 4 >Þ � TMR2PS � TOSC ð2:8Þ

or

CCPR1L : CCP1CON < 5 : 4 >¼ PWM duty cycle

TMR2PS � TOSC

ð2:9Þ

The steps to configure the PWM are then:

� Specify the required period and duty cycle.
� Choose a value for Timer 2 prescaler (TMR2PS).
� Calculate the value to be written into PR2 register using the formula given.
� Calculate the value to be loaded into CCPR1L and CCP1CON registers using the formula

given.
� Clear bit 2 of TRISC to make CCP1 pin an output pin.
� Configure the CCP1 module for PWM operation using register CCP1CON.

Bits 0–3 of CCP1CON register must be set to ‘1100’ to enable the PWM module. Bits 4

and 5 of this register must be loaded with the two LSB bits of the duty cycle value.

An example is given below to show how the PWM module can be set up. In this example it

is assumed that we are using a PIC18F2410 type microcontroller operated with a 4MHz

clock. We further assume that the required PWM period is 60 ms and the required duty cycle

(ON time) is 30 ms. The steps required to configure the various registers for this operation are:

Figure 2.38 Typical PWM waveform

54 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� Using a 4 MHz clock, TOSC¼ 1/4¼ 0.25� 10�6ms.
� Assuming a Timer 2 prescaler factor of 4, we have:

PR2 ¼ PWM period

TMR2PS � 4 � TOSC

� 1 ð2:10Þ

or

PR2 ¼ 60� 10�6

4 � 4 � 0:25� 10�6
� 1 ¼ 14 or 0� 0E ð2:11Þ

Also

CCPR1L : CCP1CON < 5 : 4 >¼ PWM duty cycle

TMR2PS � TOSC

ð2:12Þ

or

CCPR1L : CCP1CON < 5 : 4 >¼ 30� 10�6

4 � 0:25� 10�6
¼ 30 ð2:13Þ

The equivalent of number 30 in 10-bit binary is ‘0000011110’ or ‘00000111 10’
� Therefore, the value to be loaded into bits 4 and 5 of CCP1CON is ‘10’. Bits 2 and 3 of

CCP1CON must be set to high for PWM operation. Therefore, CCP1CON must be set to

bit pattern (‘X’ is ‘don’t care’):

XX001100 that is hexadecimal 0�C0

� The value to be loaded into CCPR1L is ‘00000111’, that is hexadecimal number 0� 07.

The required steps are summarised below:
� Load Timer 2 with prescaler of 4, that is load T2CON with

00000101, which is 0� 05;
� Load 0� 0E into PR2;
� Load 0� 07 into CCPR1L;
� Load 0 into TRISC (make CCP1 pin output);
� Load 0�C0 into CCP1CON.

One period of the generated PWM waveform is shown in Figure 2.39.

Figure 2.39 Generated PWM waveform

PIC18F Microcontrollers 55

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 Summary

This chapter has described the important features of the architecture of the PIC18F2410

microcontroller. The architecture of most other PIC18F families of microcontrollers are sim-

ilar, having additional memories, additional I/O ports, or special functions such as CAN bus

modules, USB modules, and so on.

The important parts of the PIC18F2410 microcontroller have been described, including

the data memory map, program memory map, I/O ports, clock sources, timers, A/D con-

verter, configuration registers, the watchdog, interrupts, and the PWM module.

Exercises

2.1 Describe the program memory map of the PIC18F2410 microcontroller. How much is

the maximum addressable memory?

2.2 Describe the data memory map of the PIC18F2410 microcontroller. What is a mem-

ory bank? How many memory banks are there in the PIC18F2410 microcontroller?

2.3 What is an SFR register? Give an example.

2.4 Describe how a PIC18F2410 microcontroller can be operated from an external 8MHz

crystal. Draw the circuit diagram.

2.5 Explain how the PLL can be used to increase the clock frequency in a PIC18F2410

microcontroller.

2.6 Show which bits should be set to operate a PIC18F2410 microcontroller from the

internal 4MHz clock.

2.7 Draw a circuit diagram to show how a PIC18F2410 microcontroller can be reset using

an external reset button.

2.8 Draw the block diagram of a typical I/O port (without the peripheral functions) and

explain how the input-output operations take place.

2.9 Explain the importance of reading a port value using the LAT register instead of the

standard PORT register.

2.10 In a non-time-critical application, it is required to operate a PIC18F2410 microcon-

troller using an external resistor and a capacitor for timing. Assuming the required

clock frequency is 5MHz, what will be the values of the resistor and the capacitor?

Draw the circuit diagram to show how these timing components can be connected to

the microcontroller.

2.11 In an application it is required to generate a delay of 250 ms using TIMER 0. Calcu-

late the value to be loaded into register TMR0L, assuming that the microcontroller is

operated from a 6MHz clock, and TIMER 0 is operated in 8-bit mode.

2.12 In a TIMER 0 based application, register TMR0L is loaded with 250. Assuming the

microcontroller clock rate is 8MHz, and the prescaler is 64, calculate the time it will

take to overflow the timer.

2.13 In an application it is required to use the watchdog to reset the microcontroller every

250ms. Explain how this can be achieved.

2.14 Explain why the watchdog is important in time-critical applications.

2.15 Explain what a configuration register is. How can the configuration register be

loaded?

56 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

2.16 Draw the circuit diagram to show how an external clock can be connected to a

PIC18F2410 microcontroller to provide clock pulses.

2.17 In an application it is required to operate a PIC18F2410 microcontroller with a clock

of 4MHz. Describe all different ways that this can be achieved and draw the circuit

diagram for each case.

2.18 In a time-critical application it is required to operate a PIC18F2410 microcontroller

with a 40MHz clock. Describe how this can be achieved using the PLL and draw the

circuit diagram.

2.19 Assuming that an 8MHz clock is used with a prescaler of 256, what is the maximum

time for the timer to overflow assuming operation of the timer in 16-bit mode?

2.20 It is required to set PORTA of a PIC18F2410 microcontroller, such that the pins at the

lower nibble are inputs and those at the upper nibble are outputs. What value must be

loaded into the TRISA register?

2.21 In a typical A/D converter application, the reference voltage is þ5V. If the digital

value of the input signal read is hexadecimal 0� 3F, what is the voltage in m V?

2.22 In an A/D application, the reference voltage is þ5V. If a 2V signal is applied to one

of the analogue inputs, what is the digital value of the signal read?

2.23 Explain why interrupts are important in microcontroller systems.

2.24 How many different types of interrupt sources are there in the PIC18 series of

microcontrollers.

2.25 Explain the differences between high-priority and low-priority interrupts.

2.26 It is required to set up the timer TMR0 to generate interrupts on overflow. Explain

which registers need to be set up

2.27 Explain the steps required to generate a PWM signal.

2.28 It is required to generate a PWM signal with a period of 100ms and duty cycle of

80ms. Assuming a microcontroller clock frequency of 4MHz, calculate the values to

be loaded into various registers.

PIC18F Microcontrollers 57

www.it-ebooks.info

http://www.it-ebooks.info/

3

C Programming Language

Microcontrollers can be programmed using one of several high-level languages. Some of the

commonly used high-level languages are BASIC, PASCAL and C. Because of its ease of use

and its power, C is probably the most commonly used high-level language for microcontroller

programming. C has been used for the past 10 to 15 years and has gone through tremendous

growth. Today, there seems to be an endless supply of low-cost, high-quality C compilers

directed to any type of computer, from the PC to the smallest 8-pin microcontroller chip.

Before the development of the C language, microprocessors and microcontrollers were

being programmed using the native Assembly language of the target chip. Assembly lan-

guage was a difficult language to learn. Also, it was difficult and time consuming to develop

and maintain complex applications using the Assembly language. For example, developing a

mathematical application using floating point arithmetic took days, if not weeks. The devel-

oped code was so large that it was difficult to modify or maintain it. In addition, the code was

specific for the target processor. If it was required to upgrade to a different processor then, in

most cases, it was necessary to re-write the complete code, consuming a lot of time and

effort. C, on the other hand, is a portable language. In general, a C program written for a

specific processor can easily be modified and used for another processor. Highly complex

programs can be developed and maintained using the C language.

The main objective of this chapter is to introduce new readers to the C language, through a

simple overview of its fundamental features, in an attempt to start them programming early.

The C language is described in a tutorial way, with many examples, in such a way that the

readers can gain confidence and start coding immediately. However it is important for the

reader to appreciate that C is a rich language with many features, and this is not a text book

on C language, so only the parts relevant to future chapters of the book will be covered here.

3.1 C Languages for Microcontrollers

There are basically three types of C compilers in the market for the PIC microcontrollers,

depending upon the type of microcontroller used. Some compilers are available for the low-

end microcontrollers, such as the PIC10/12/16 series. Some compilers are available for the

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

mid-range microcontrollers, such as the PIC18 series. Some compilers are specifically

designed for the mid-range PIC24 series of microcontrollers, and a few compilers are availa-

ble for the high-end PIC32 series of microcontrollers.

In this book we shall be using the mid-range PIC18 microcontrollers in our designs and

examples. There are several C compilers in the market developed for the PIC18 series of

microcontrollers. Some of the popular C compilers used in the development of educational,

domestic, commercial or industrial PIC18 microcontroller based projects are:

� mikroC Pro for PIC C compiler;
� PICC18 C compiler;
� C18 C compiler;
� CCS C compiler.

mikroC Pro for PIC C compiler has gained much popularity in recent years, because of its low

cost, ease of use and full support for various development boards. This compiler has been

developed by MikroElektronika (Web site: www.mikroe.com) and is one of the easy-to-learn

compilers with rich resources, such as a large number of built-in library functions. The com-

piler provides an integrated development environment (IDE) with built-in editor, compiler, sim-

ulator and an in-circuit-debugger (e.g. mikroICD). Users can write a program using the built-in

editor, then compile and simulate the program with the click of a few buttons. The final work-

ing program can be downloaded to the target microcontroller by clicking a button. In addition

to the simulator, users can carry out real-time debugging of their applications using the built-in

in-circuit-debugger. A demo version of the compiler with a 2 KB program limit is available

from MikroElektronika for educational use or for learning the basic features of the compiler.

Users can upgrade to the full version after making the necessary payment. The full version

requires a dongle to be connected to the USB port for compiling programs greater than 2 KB,

or users can choose to tie the compiler to their PCs by registering using the serial number of

their PCs. In addition, the company offers low-cost integrated packages, including the compiler

and a hardware development board. In this book we shall mainly concentrate on the use of the

microC compiler, and all of the projects are based on this compiler.

PICC18 C compiler is another popular C compiler, developed by Hi-Tech Software (Web

site: www.htsoft.com). This compiler has two versions: the standard compiler and the profes-

sional version. A powerful simulator and an ITD (Hi-Tide) are provided by the company.

PICC18 is supported by the PROTEUS simulator (www.labcenter.co.uk), which can be used

to simulate PIC microcontroller based systems with various peripheral devices, such as

LEDs, motors, buttons, and so on. A limited period demo version of this compiler is availa-

ble from the developers’ Web site.

C18 C compiler is a product of the Microchip Inc. (Web site: www.microchip.com). A

limited period demo version, and a limited functionality version with no time limit of C18,

are available from the Microchip Web site. C18 includes a simulator, and supports hardware

and software development tools, such as in-circuit-emulators (e.g. ICE2000) and in-circuit-

debuggers (e.g. ICD2, ICD3, Real-Ice, and so on). C18 includes a large number of library

functions that can be used during program development. The compiler is based on an inte-

grated environment where users can create programs, compile them, and then download to

the target microcontroller using either a suitable programmer (or debugger) or using a devel-

opment board with built-in PIC microcontroller programmer hardware.

60 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

CCS C compiler has been developed by the Custom Computer Systems Inc (Web site:

www.ccsinfo.com). The company provides a limited period demo version of their compiler

for users who may want to evaluate the compiler. CCS compiler provides a large number of

built-in functions and supports an in-circuit-debugger (e.g. ICD-U40), which aids greatly in

the development of PIC18 microcontroller based systems. CCS C compiler is very fast and

produces compact code. The compiler is fully compatible with various hardware develop-

ment boards offered by the developers. In addition, the company offers low-cost integrated

packages, including the compiler and a hardware development board. The syntax of the com-

piler is somewhat different to the other C compilers. A large number of examples and tutori-

als are provided by the developers to help users in their projects.

In this book we shall be looking at the features of the popular and powerful mikroC Pro for

PIC programming language, and this language will be used in all of the projects in the book.

3.2 Your First mikroC Pro for PIC Program

Figure 3.1 shows a very simple mikroC Pro for PIC program. This program turns ON all the

8 LEDs connected to port B of a PIC microcontroller. Then, after a 500 millisecond delay, all

the 8 LEDs are turned OFF. Do not worry if you do not understand the operation of this

program at this stage, as all will be clear as we progress through this chapter. Some of the

elements used in Figure 3.1 are described in detail here.

3.2.1 Comments

Comments are used in programs to clarify the operation of the program. Although the use

of comments are optional, it is strongly recommended that you use as many comments as

possible in your programs, as comments make your programs readable and easily maintain-

able. Imagine how hard it would be to write a complex program with no comments and then

/*==

 TURN ON-OFF ALL LEDS

This program turns ON all the 8 LEDs connected to PORT B of a PIC microcontroller. Then,
After 500 millisecond delay all 8 LEDs are turned OFF

Author: D. Ibrahim
File: LED.C
Date: October, 2011
Modifications:

==*/

void main()
{
 TRISB = 0; // Configure PORT B as output
 PORTB = 0xFF; // Turn ON all 8 LEDs
 Delay_Ms(500); // Wait 500 ms
 PORTB = 0; // Turn OFF all 8 LEDs
}

Figure 3.1 A very simple mikroC Pro for PIC program

C Programming Language 61

www.it-ebooks.info

http://www.it-ebooks.info/

try to modify the program after several months. All the comment lines are ignored by the

compiler.

In mikroC Pro for PIC language, comments can be of two types: long comments and short

comments. Long comments start with the character pair:

/�

and end with the character pair:

*/

Long comments are commonly used at the beginning of a program to describe the program

details, such as what the program does, what type of hardware is used, who the author is, the

date program was created, filename of the program, version history, and so on. You can see

the use of long comments at the beginning of our simple program. Long comments are also

used inside a program to describe the operation of part of the program, for example the

parameters of functions, the algorithm used, and so on.

Short comments start with the character pair:

//

Short comments are not terminated with a character and they can be used in a single line,

starting anywhere in the line. These comments are generally used after program statements

and they describe what the statement does. Examples of short comments can be seen in our

simple program in Figure 3.1.

3.2.2 Beginning and Ending a Program

In mikroC Pro for PIC language, a program starts with the keywords:

void main()

After this, a curly opening bracket is used to indicate the start of program body. The

program is terminated with a curly closing bracket. Thus, the structure of a program is

(see Figure 3.1):

void main()

{

Program body

}

The program body consists of program statements. Each program statement must be ter-

minated with a semicolon (‘;’) character to indicate the end of the statement, otherwise an

error will be generated by the compiler:

k = 50; //correct

i = k+5; //correct

k = 50 //error

62 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.3 White Spaces

White spaces in programs consist of spaces, tabs, newline characters, and blanks. These

characters are ignored by the compiler. Thus, the following lines are identical:

k = 20; p = 50;

or

k = 20;

p = 50;

or

k = 20;

p =50;

or

k=20;

p=

20;

In some applications, we may have a long string that we may want to extend over several

lines. The backspace character (‘\’) is used to join strings that extend to several lines. For

example:

"My new mikroC\

Compiler"

parses into string ‘My new mikroC Compiler’.

3.2.4 Variable Names

In mikroC Pro for PIC language, variable names can begin with a letter or the underscore

character (‘_’). Variable names can include any character a to z, A to Z, or 0 to 9. A variable

name can be up to 31 characters long. Some examples of valid variable names are:

Total Sum Average My_Variable username MaxTotal _Name

and here are some invalid variable names:

%name ?Total 7Sum (Max 12count

C Programming Language 63

www.it-ebooks.info

http://www.it-ebooks.info/

The names are case sensitive and thus variables with lowercase names are different to

variables with uppercase names. Thus, the following variables are all different:

Total total ToTal TotaL TOTAL TOTal

3.2.5 Reserved Names

Some names in mikroC Pro for PIC are reserved for the compiler and these names can not be

used as variable names. Table 3.1 gives a list of these reserved names. For example, the

following variable names are illegal:

for while char int return signed const

3.2.6 Variable Types

mikroC Pro for PIC is a strictly typed language, which means that every object, expression or

function must have a defined type before the program is compiled. mikroC Pro for PIC sup-

ports many pre-defined and user-defined data types, including signed and unsigned bytes and

integers in various sizes, floating point numbers in various precisions, arrays, structures, and

so on. The type of a variable defines how much memory space should be allocated for a

variable in memory and how the bits of the variable should be manipulated. Types can be

divided into two groups: Fundamental types and Derived types. The fundamental types rep-

resent types that cannot be split up into smaller parts. These types are void, char, int, float

and double, together with short, long, signed and unsigned variants. The derived types are

also known as structured types and they include pointers, structures, arrays and unions.

mikroC Pro for PIC language supports the fundamental variable types shown in Table 3.2.

Examples of these variable types are given in this section.

unsigned char or unsigned short int are unsigned 8-bit variables, occupying only 1 byte

in memory and having values in the range 0 to 255. In the following example, variable Sum

is assigned value 225:

unsigned char Sum = 225;

Table 3.1 mikroC Pro for PIC reserved names

asm enum signed

auto extern sizeof

break float static

case for struct

char goto switch

const if typedef

continue int union

default long unsigned

do register void

double return volatile

else short while

64 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

or

unsigned char Sum;

Sum = 225;

unsigned int variables are unsigned 16-bit variables, occupying 2 bytes in memory and

having values in the range 0 to 65 535. In the following example, variable Total is assigned

value 64 500:

unsigned int Total = 64500;

unsigned long int variables are unsigned 32-bit variables, occupying 4 bytes in memory

and having values in the range 0 to 4 294 967 295. In the following example, variable Sum is

assigned value 4 200 000 000:

unsigned long int Sum = 4200000000;

signed char or signed short int variables are signed 8-bit variables, occupying only 1

byte in memory and having values in the range �128 to þ127. In the following example,

variable Total is assigned value �240:

signed char Total = -240;

signed int variables are 16-bit variables, occupying 2 bytes in memory and having values

in the range �32 768 to þ32 767. In the following example, variable Sum is assigned value

�31 500:

signed int Sum = -31500;

Table 3.2 mikroC Pro for PIC variable types

Type Size (bits) Range

unsigned char 8 0 to 255

unsigned short int 8 0 to 255

unsigned int 16 0 to 65 535

unsigned long int 32 0 to 4 294 967 295

signed char 8 �128 to 127

signed short int 8 �128 to 127

signed int 16 �32 768 to 32 767

signed long int 32 �2 147 483 648 to 2 147 483 647

float 32 �1.17549435082E-38 to �6.80564774407E38

double 32 �1.17549435082E-38 to �6.80564774407E38

long double 32 �1.17549435082E-38 to �6.80564774407E38

C Programming Language 65

www.it-ebooks.info

http://www.it-ebooks.info/

signed long int variables are 32-bit variables, occupying 4 bytes in memory and having

values in the range �2 147 483 648 to þ2 147 483 647. In the following example, variable

Sum is assigned value 2 050 480 000:

signed long int Sum = 2050480000;

Floating point number data types are float, double and long double. mikroC Pro for PIC

implements the floating point numbers using the Microchip AN575 32-bit format, which is

IEEE 754 compliant. The floating point numbers have values in the range

�1.17549435082E-38 to �6.80564774407E-38. In the following example, variable Volume

is assigned value 23.45:

float Volume = 23.45;

or

float Volume;

Volume = 23.45;

3.2.7 Constants

Constants are very important in mikroC Pro for PIC programs, especially if the RAM data

memory has limited size. Constant variables are stored in the microcontroller flash program

memory, thus freeing valuable RAM memory space. In mikroC Pro for PIC, constants can be

characters, integers, floating point numbers, strings and enumerated variables.

3.2.7.1 Character Constants

A character constant occupies a single byte in the program memory. The constant is declared

by specifying the character within a single quote mark. In the following example, variable

FirstName is declared as a constant character and is assigned the value ‘D’:

const FirstName;

FirstName = ‘D’;

3.2.7.2 Integer Constants

Integer constants occupy 2 bytes in memory. These constants can be specified using decimal,

hexadecimal, octal or binary bases. The data type of a constant is derived by the compiler

automatically, depending upon the value of the constant. For example, a constant with a

value 130 is stored as an unsigned char, a constant with a value 12 000 is stored as an

unsigned int, and a constant with a value �22 500 is stored as a signed int.

In the following example, MIN and MAX are defined as constants 0 and 200, respectively:

const MIN = 0;

const MAX = 200;

66 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Hexadecimal numbers have the range 0 to 9 and A to F. Hexadecimal constants are speci-

fied by inserting characters ‘0x’ or ‘0X’ in front of the number. In the following example,

constant MAX is defined to have the hexadecimal value FFF:

const MAX = 0xFFF;

Octal numbers have the range 0 to 7. Octal constants are specified by inserting number ‘0’

in front of the number. In the following example, constant MAX is defined to have the octal

value 177:

const MAX = 0177;

Binary numbers can be 0 or 1. These numbers are specified by inserting characters ‘0b’ or

‘0B’ in front of the number. In the following example, constant MIN is defined to have the

binary value 01 101 111:

const MIN = 0b01101111;

3.2.7.3 Floating Point Constants

Floating point constants are non-integer constants having a decimal part, a dot and the frac-

tional part. In addition, for very large or very small numbers, the exponent part can be speci-

fied by inserting characters ‘e’ or ‘E’ with the value of the exponent at the end of the number.

In the following example, variable MIN is given the value 0.15E-2, and MAX is given the

value 25.5E10:

const MIN = 0.15E-2;

const MAX = 25.5E10;

3.2.7.4 String Constants

String constants consist of collections of characters enclosed within double quotes. An

example string constant is:

"This is a string"

As we shall see in later sections, strings are made up of character arrays.

3.2.7.5 Enumerated Constants

An enumeration data type is used for representing an abstract, discreet set of values with

appropriate symbolic names. Enumeration makes a program easier to follow.

Variables of the enum type are declared the same as other variables. An example enumera-

tion declaration is given below:

enum colours

{

C Programming Language 67

www.it-ebooks.info

http://www.it-ebooks.info/

Black,

Red,

Green,

Blue,

Cyan

} clr;

In the above example, Black¼ 0, Red¼ 1, Green¼ 2, and so on. Identifier clr can take any

value of the specified colours, or any integer value:

clr = Red; //clr = 1

or

clr = 1; //same as above

The order of constants in an enum type can be explicitly re-arranged using specific values.

Any names without initialisers will be increased by 1 with respect with the previous value.

An example is given below:

enum colours

{

Black, //value 0

Red, //value 1

Green = 4, //value 4

Blue, //value 5

Cyan //value 6

} clr;

Another example is given below:

enum Weekdays

{

MON = 1; //value 1

TUE, //value 2

WED, //value 3

THU, //value 4

FRI, //value 5

SAT, //value 6

SUN //value 7

}

3.2.8 Escape Sequences

Some of the control characters in the ASCII table are non-printable and are known as the

escape sequences. For example, the character ‘\n’ represents the new-line character, which

causes the cursor to jump to the next line. Table 3.3 gives a list of the commonly used escape

68 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

sequences. Notice that the escape sequence characters can also be obtained by specifying

their values. For example, the hexadecimal ‘0�0A’ can be used to specify the new line.

3.2.9 Volatile Variables

Volatile declaration is particularly important in interrupt based applications. The qualifier

volatile implies that a variable may change its value during run time, independent from the

main program. Use the volatile modifier to indicate that a variable can be changed by a back-

ground routine, an interrupt routine or I/O port. Declaring an object to be volatile warns the

compiler not to make assumptions concerning the value of an object while evaluating expres-

sions in which it occurs, because the value could be changed at any moment. In the following

example, variable Cnt is declared to be a volatile unsigned character:

volatile unsigned char Cnt;

3.2.10 Accessing Bits of a Variable

There are many cases where we may want to access individual bits of an 8-bit variable. If we

wish to access the bit of a microcontroller internal register, and if we know the name of the

register to be accessed, then we can simply write the name of the bit and set or reset it as

required. An example is given below:

GIE_bit = 0; //Clear GIE bit

We can also use the qualifiers B0, B1, B7 or F0, F1, F7, with ‘0’ being the

least significant bit (LSB) and ‘7’ being the most significant bit (MSB). As an example, to set

bit 0 of register INTCON we can write:

INTCON.B0 = 1; //Set bit 0 of register INTCON

or, to set bit 3 we can write:

INTCON.F3 = 1; //Set bit 3 of register INTCON

Table 3.3 Commonly used escape sequences

Escape Sequence Hex Value Character

\a 0�07 BEL (bell)

\b 0�08 BS (backspace)

\t 0�09 HT (horozontal tab)

\n 0�0A LF (linefeed)

\v 0�0B VT (vertical feed)

\f 0�0C FF (formfeed)

\r 0�0D CR (carriage return)

\xH String of hex digits

C Programming Language 69

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.11 sbit Type

The mikroC Pro for PIC compiler has sbit data type, which provides access to bit addressable

internal registers (SFRs). You can access bits of internal registers, as in the following

examples:

sbit LEDA at PORTA.B0; //LEDA is assigned to bit 0 of PORT A

sbit LEDB at PORTA.B7; //LEDB is assigned to bit 7 of PORT A

or, alternatively and equivalently,

sbit LEDA at RA0_bit; //LEDA is assigned to bit 0 of PORT A

sbit LEDB at RA7_bit; //LEDB is assigned to bit 7 of PORT A

3.2.12 bit Type

mikroC Pro for PIC compiler also supports a single-bit definition using the bit type. An

example is given below:

bit xf;

3.2.13 Arrays

3.2.13.1 Numeric Arrays

During program development, there is usually the need to manipulate several related items of

data of the same type. For example, a program designed to read the ages of 50 students in a

classroom may at first seem to require the use of 50 separate integer type variables. However,

such an approach makes the manipulation of data difficult, as we have to access each integer

separately. Furthermore, if the class size increases to, say, 70 students, then we have to intro-

duce 20 more integers and 20 more statements to process the new entries.

The solution to this problem is to use an array with an easy way of collecting related items

under a single variable name. An array is declared by specifying its name, type and the num-

ber of elements it has to store. For example, the following is an unsigned integer array called

Average, having five elements:

unsigned int Average[5];

The array is stored in sequential memory locations, as shown below:

Average[0]

Average[1]

Average[2]

Average[3]

Average[4]

70 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the first array element has index 0 and the last one has index 4. Array

elements are addressed by writing the array name followed by a square bracket where the

index is specified. For example, to set the third array element to value 120, we have to write:

Average[2] = 120;

Similarly, for example, to copy the third array element to a variable called MyValue, we

can write:

MyValue = Average[2];

Whenever an array definition is encountered by the compiler, a calculation is performed to

determine the storage requirements of each element.

The contents of an array can be initialised during the declaration of the array by specifying

the array elements, separated by commas and enclosed in curly brackets. An example follows

where array numbers have 10 elements and numbers[0] ¼ 0, numbers[1] ¼ 1, and so on:

unsigned int numbers[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

The same array can be declared, without specifying the array size, as follows. Here, the

compiler determines the array size and allocates the required number of bytes in memory:

unsigned int numbers[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

Note that it is not necessary to initialise all of the elements of an array. For example, we

could pre-initialise just the first three elements of an array and leave the remaining elements

un-initialised with a definition of the form:

int MyNumbers[10] = {0, 2, 5};

In which case only elements [0], [1] and [2] would be initialised, even though storage will

be reserved for 10 elements. Here, any remaining un-initialised elements are implicitly ini-

tialised to zero.

Note, however, that it is an error to have more elements than the defined array size. For

example, the definition below will generate a compiler error:

int numbers[2] = {0, 3, 7, 8, 9};

Whenever an array is initialised, the compiler copies the specified data to the array ele-

ments. If this array happens to be inside a function, then each time the function is called, the

array elements will be re-loaded, thus causing unnecessary delay. For this reason, the key-

word static should be used to force the array elements to be loaded only once at the start of

the program:

static int numbers[2] = {0, 5};

In mikroC Pro for PIC language, we can also declare an array with multiple dimensions.

Such arrays are commonly used in mathematical operations, such as vector and matrix calcu-

lations. A multi-dimensional array is declared by specifying the data type, name of the array

C Programming Language 71

www.it-ebooks.info

http://www.it-ebooks.info/

and the size of each dimension. In the following example, a two-dimensional array called

MyMatrix is declared, having three rows and two columns:

int MyMatrix[3][2];

This array will have the following structure. Altogether the array has six elements. The

first element of the array is MyMatrix[0][0], and the last element is MyMatrix[2][1]:

MyMatrix[0][0] MyMatrix[0][1]

MyMatrix[1][0] MyMatrix[1][1]

MyMatrix[2][0] MyMatrix[2][1]

Elements of a multi-dimensional array can be initialised as before, by specifying the ele-

ments within curly brackets and separated by commas. An example is given below:

int numbers[2][3] = { {0, 2, 5}, {6, 8, 5} };

In the above example, we have 2 rows and 3 columns. The value of each element can be

shown as:

0 2 5

6 8 5

The size of the first dimension is optional and can be left blank, as shown below for the

above example. The compiler fills in the correct size during compilation:

int numbers[][3] = { { 0, 2, 5}, {6, 8, 5} };

3.2.13.2 Character Arrays

Character arrays are declared similarly to numeric arrays, where each character is separated

and enclosed within a pair of curly brackets. In the following example, character array

MyName has four elements:

unsigned char MyName[4] = {‘J’, ‘O’, ‘H’, ‘N’};

As before, we can leave the array size blank:

unsigned char MyName[] = {‘J’, ‘O’, ‘H’, ‘N’};

3.2.13.3 Strings

Strings are character arrays terminated with a NULL character (hexadecimal 0�0 or ‘\0’). In

the example below, MyName is a string having five elements, including the string terminator

NULL character:

72 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

unsigned char MyName[] = {‘J’, ‘O’, ‘H’, ‘N’, ‘\0’};

As you can see from the above example, we have to separate each character with a comma

and terminate the string with a NULL character. An alternative and easier way of declaring

the same string would be:

unsigned char MyName[] = “JOHN”;

Here, the characters are terminated automatically with a NULL character and this second

option is more readable, especially when it is required to declare long strings. In addition, the

string will not be terminated correctly if we forget to insert the NULL character.

3.2.13.4 Constant Strings

In many applications it may be required to create fixed long strings in the flash program

memory of the microcontroller. Such strings can be created as constant strings to save space

in the RAM data memory. An example is given below:

const unsigned char Text[] = “This is the main menu of the program”;

3.2.13.5 Arrays of Strings

There are many applications where we may want to create arrays of strings in our programs.

In the following example, the array Days stores days of the week. Notice that it is optional to

specify size of the first dimension:

char Days[][10] = { “Monday”,

“Tuesday”,

“Wednesday”,

“Thursday”,

“Friday”,

“Saturday”,

“Sunday”

};

In the above example, the size of the first dimension is set to 7 automatically by the com-

piler. The second dimension is set to 10, which is the size of the longest word in the array.

Notice that each word in the array is a string and as such is terminated with a NULL charac-

ter. Figure 3.2 shows the structure of this array.

3.2.14 Pointers

Pointers are a very important part of the C language, and the subject of pointers is perhaps

the most interesting and useful aspect of C. The concept of pointers may sound strange to

most students who have been programming in other high-level languages, such as Pascal or

BASIC. Pointers are important, especially in microcontroller based applications, since they

enable the programmer to directly access the memory locations by using memory addresses.

C Programming Language 73

www.it-ebooks.info

http://www.it-ebooks.info/

Pointers hold the addresses of variables in memory. They are declared just like the other

variables, but with the character ‘�’ inserted in front of the variable name. Pointers can be

created to point (or hold the address of) to character variables, integer variables, long varia-

bles, floating point variables, and so on. Because of this generality, we have to specify the

type of a pointer at the time of declaring it.

In the following example, ptr is the pointer to a character variable in memory. At this point

all we know is that it is a pointer can hold the address of a character variable. But we have

not specified yet which variable’s address it is holding:

unsigned char *ptr;

We can now specify the name of the variable whose address we wish to hold. This is done

using the character ‘&’ in front of the variable name. In the following example, ptr holds the

address of character variable Cnt in memory:

ptr = &Cnt;

The value of variable Cnt can be accessed by using the ‘�’ character in front of its pointer.

Thus, the following two statements are equivalent:

Cnt = 5; //Cnt = 5

*ptr = 5; //Set the value of the variable pointed to by ptr to 5

We can also make an assignment of the form shown below, to assign value to a variable:

Count = *ptr; //Count = Cnt

3.2.14.1 Pointer Arithmetic

In C language we can perform various pointer arithmetic, which may involve:

� adding or subtracting pointers with integer values;
� adding or subtracting two pointers;
� comparing two pointers;
� comparing a pointer to a NULL;
� assigning one pointer to another.

‘\0’yad n o M Days[0]
‘\0’ y a d s e u T Days[1]

‘0\’ Y a d s e n d e W Days[2]
‘0\’ Y a d s r u h T Days[3]

‘0\’Yad i r F Days[4]
‘0\’ Y a d r u t a S Days[5]

‘0\’ y a d n u S Days[6]

Figure 3.2 Structure of the array of strings

74 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

As an example to pointer arithmetic, assume that six memory locations, starting from

address 1000, store the character variables, as shown in Figure 3.3.

We can now declare a pointer to hold the address of variable A and then perform the

following operations:

char *ptr; //ptr is a character pointer

ptr = &A; //ptr holds address 1000

ptr = ptr +2; //ptr now points to 1002

*ptr = 25; //Variable C = 25

ptr = ptr + 1; //ptr now points to 1003

E = *ptr; //Variable E = 100

ptr = ptr + 2; //ptr now points to 1005

*ptr = 0; //Variable F = 0

3.2.14.2 Array Pointers

In C language, the name of an array is also a pointer to the first element of the array. Thus,

for the array:

int Sum[10];

The name Sum is also a pointer to element Sum[0] of the array, and it holds the address of

the array. Similarly, the following statements can also be used to point to the array:

int *ptr; //ptr is an integer pointer

ptr = &Sum[0]; //ptr points to first element of array Sum

The following two statements are equivalent, since Sum is also the address of array Sum:

Sum[2] = 0;

*(Sum + 2) = 0;

It is interesting to note that the following statement is also true, for the same reason:

&Sum[3] = Sum + 3;

1000 A = 23
1001 B = 0
1002 C = 4
1003 D = 100
1004 E = 250
1005 F = 65

Figure 3.3 Memory locations

C Programming Language 75

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.14.3 Using Pointers in String Operations

Another useful application of pointers is to create and manipulate string variables. Remem-

ber that strings are a collection of character arrays terminated with the NULL character.

Using pointers, we can create a string, as shown in the example below:

char *p = “JOHN”;

Here, a hidden character array is created at compile time, containing characters ‘JOHN’,

terminated with the NULL character. The character pointer p is initialised and loaded with

the address of this string in memory. Thus, p holds the address of the first character of the

string, that is the address of character ‘J’. The programmer has no control over the size of

the created string and therefore should not attempt to alter its contents using the pointer.

In many applications we may want to create long fixed strings. This is easily done using

pointers and declaring the strings as constants. An example is given below:

const char *p1 = “My very long text string”;

It is important to realise the differences between the following two ways of creating

strings:

cont char Text[] = “An example text”;

const char *p = “An example text”;

In the first statement, a character array called Text is created and is terminated with a

NULL character. Individual characters of this array can be accessed by indexing the array. In

the second statement, the characters ‘An example text’ and terminator NULL are stored

somewhere in memory, and pointer p is loaded with the address of the first character of this

text, that is the address of character ‘A’.

We can create arrays of text strings using pointers. In the following example, seven point-

ers are created with names Days[0] to Days[6] and each pointer is loaded with the corre-

sponding address of the day name. The dimension of the pointer array is set to 7

automatically by the compiler:

char *Days[] ={ “Monday”,

“Tuesday”,

“Wednesday”,

“Thursday”,

“Friday”,

“Saturday”,

“Sunday”

};

3.2.15 Structures

Structures are used in programs to group and manipulate related but different types of data as

a single object or variable. The elements of a structure can all be of different type, which is in

contrast with an array where all elements must be of the same type. For example, a structure

76 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

can be used to store details of a person, such as the name, age, height and weight as a single

object. Here, the elements are of different types. Name is a string, age is an integer, and

height and weight are floating point type variables.

A structure is created using the keyword struct, followed by a structure name and a list of

the elements (or structure members), enclosed within a pair of curly brackets. As an exam-

ple, the structure called Person given below could be used to describe details of a person:

struct Person

{

char name[30];

char surname[30];

char address[80];

int age;

float height;

float weight;

};

When a structure, as above, is declared, it is simply a template and no space is reserved in

memory for this template. It is only when variables of the same type are declared that the

structure takes space in memory. For example, we can create a variable called Me of type

Person by the statement:

struct Person Me;

It is important to realise that it is Me that is the variable and not the Person. We can create

more than one variable of type Person by separating them with a comma, as shown below:

struct Person Me, You, He, She;

In the above examples, the structure template and variable creation were done in two sepa-

rate statements. If required, these two statements can be combined into one and the variables

can be created during the creation of the template. An example is given below:

struct Person

{

char name[30];

char surname[30];

char address[80];

int age;

float height;

float weight;

}Me, You, He, She;

We can omit the name of the structure if we wish, but if we do this, then all variables based

upon that structure template must be defined at the same time as the template is declared, as

there is no way to introduce new variables later using the same template.

C Programming Language 77

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.15.1 Accessing Structure Members

After a structure variable has been defined, its members (elements within the structure) can

be individually accessed using the dot (‘.’) operator. This operator is placed between the

structure name and the member name that we wish to access. In the following statement, age

member of structure Me above is set to 25:

Me.age = 25;

Similarly, for example, the height in the same structure can be assigned to a variable called

H with the statement:

H = Me.height;

3.2.15.2 Initialising Structure Members

As with other data types, when a structure is declared, the values of its members are

undefined. However, as with arrays, it is often necessary to initialise the member elements to

known values during the declaration of a structure. The following example shows how the

sides of a rectangle declared as a structure can be initialised to 2.5 and 4.0:

struct Rectangle

{

float sideA;

float sideB;

} MyRectangle = {2.5, 4.0};

Members of a structure can also be assigned values by using structure pointers. For exam-

ple, in the above example, we can define MyRectangle as a pointer and then assign values to

its members using the arrow (‘->’) operator:

struct Rectangle

{

float sideA;

float sideB;

} *MyRectangle;

MyRectangle -> sideA = 2.5;

MyRectangle -> sideB = 4.0;

3.2.15.3 Structure Copying

If two structure are derived from the same template, then it is permissible to assign one

structure to the other one (this is not possible in arrays). An example is given below:

struct Rectangle

{

float sideA; //Member sideA of the structure

float sideB; //Member sideB of the structure

78 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

} R1, R2; //R1 and R2 are two variables

R1.sideA = 5.0; //Initialize sideA of R1

R1.sideB = 6.5; //Initialize sideB of R1

R2 = R1; //Copy all members of R1 to R2

3.2.15.4 Size of a Structure

Sometimes we need to know the size of a structure variable. We can use the sizeof operator to

find the number of bytes occupied by a structure variable. In the following example, the size

of structure variable R1 is assigned to integer variable S:

S = sizeof(R1)

3.2.15.5 Arrays of Structures

In some applications we may need a collection of structures of similar type. For example,

consider the following complex number structure template:

struct complex_number

{

float Real_Part;

float Imaginary_Part;

}

We can now create an array of this structure with 10 elements as:

struct complex_number XY[10];

Individual structure elements can now be accessed by indexing the structure variable XY.

In the example below, index 0 of the structure variable is taken and the real and imaginary

parts are set to 2.3 and 5.0, respectively:

XY[0].Real_Part = 2.3;

XY[0].Imaginary_Part = 5.0;

3.2.15.6 Structure Bit Fields

Bit fields can be defined using structures. With bit fields, we can assign identifiers to individ-

ual bits or to collections of bits of a variable. For example, to identify the low byte of a 16-bit

unsigned integer Total as LowB and the high byte as HighB, we can write:

struct

{

LowB: 8;

HighB: 8;

} Total;

C Programming Language 79

www.it-ebooks.info

http://www.it-ebooks.info/

We can then access the two bytes as:

Total.LowB = 250;

Total.HighB = 125;

3.2.16 Unions

A union in C is very much like a structure, and is even declared and initialised in the

same way. Both are based on templates and members of both are accessed in the same way.

Where a union principally differs from a structure is that in a union all members share the

same common storage area. Even though the members can be of different type, they all share

the same common storage area, and the size of this area is equal to the size of the largest data

type amongst the members of the union. An example of a union declaration is:

union Temp

{

unsigned int x;

unsigned int y;

unsigned char z;

} V;

In this example, variables x, y and z all share the same memory area. Variables x and y are

mapped to each other, where variable z is mapped to the lower byte of x or y. The size of the

common area in this example is 2 bytes. In the following statement, 16-bit hexadecimal

number 0�F034 is loaded into union variable V:

V.x = 0xF034;

Now, both variables x and y are loaded with hexadecimal number 0�F034, and variable z

is loaded with the lower byte, that is 0�34.

As with the structures, the size of a union variable can be determined using the size of

operator, as shown below:

S = sizeof(V); //Returns 2

3.2.17 Operators in mikroC Pro for PIC

Operators are symbols applied to variables to cause some operations to take place. For exam-

ple, addition symbol ‘þ’ is an operator and causes the value of a variable to change. In

mikroC Pro for PIC language, operators are classed as unary or binary. Unary operators

require only one variable and they operate on this variable, for example changing the sign of

a variable. Binary operators, on the other hand, operate on two variables, for example adding

two numbers.

Operators in mikroC Pro for PIC can be arithmetical, logical, bitwise, relational, assign-

ment, conditional and pre-processor. In this section, we shall look at these operators in detail

and see how they can be used in programs.

80 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.17.1 Arithmetic Operators

Table 3.4 gives a list of the arithmetical operators. All readers are familiar with the basic

operators of addition, subtraction and multiplication. The other arithmetic, operators need

some explanation and some understanding before they are used.

The division operator ‘/’ divides two numbers. If the numbers are real, then using floating

point arithmetic will give correct results. But, if the two numbers are integers, the division

can give wrong results, as in the following example:

int x, y, z;

x = 3;

y = 4;

z = x/y; //The result is 0

The modulus operator ‘%’ is used to give the remainder after two integer numbers are

divided. In the following example, numbers 5 and 7 are divided using the modulus operator

and the result is 2, which is the remainder:

int x, y, z;

x = 5;

y = 7;

z = 7 % 5; //z = 2 (the remainder)

The auto increment operator (þþ) is used to increment the value of a variable by 1, with-

out using the assignment operator (‘¼’). An example is given below:

int x;

x = 5;

x++; //x = 6

Similarly, the auto decrement operator (--) is used to decrement the value of a variable by

1, without using the assignment operator. An example is given below:

int x;

x = 8;

x–; //x = 7

Table 3.4 mikroC Pro for PIC arithmetic operators

Operator Operation

þ Addition

� Subtraction

� Multiplication

/ Division

% Remainder (integer division)

þþ Auto increment

-- Auto decrement

C Programming Language 81

www.it-ebooks.info

http://www.it-ebooks.info/

The auto increment and auto decrement operators can be used in assignment operations.

The value assigned to a variable changes depends on whether the ‘þþ’ or ‘--’ symbols are

placed to the left or the right of a variable. In the following example, the value of variable

Sum is 10 initially. Sum is assigned to variable Total and is then incremented automatically.

Thus, at the end, Sum contains 11 and Total contains 10:

int Sum, Total;

Sum = 10;

Total = Sum++; //Total = 10, Sum = 11

In the following example, Sum is incremented and is then assigned to Total. Thus, at the

end, Sum contains 11 and Total contains 11:

int Sum, Total;

Sum = 10;

Total = ++Sum; //Total = 11; Sum = 11

A similar thing happens when auto decrement is used. An example is given below:

int Sum, Total;

Sum = 10;

Total = Sum--; //Total 10, Sum = 9

Total = --Sum; //Total = 8, Sum = 8

3.2.17.2 Logical Operators

Logical operators are used in logical and arithmetical operations. Table 3.5 gives a list of the

mikroC Pro for PIC logical operators.

An example is given below on the use of logical operators:

Assume x = 10, y = -2

x > 0 && y < 0 //Returns TRUE (1)

x > 0 //Returns TRUE (1)

y < 0 //Returns TRUE (1)

x > 0 || y < 0 //Returns TRUE (1)

x < 0 //Returns FALSE (0)

Table 3.5 mikroC Pro for PIC logical operators

Operator Operation

&& AND

jj OR

! NOT

82 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.17.3 Bitwise Operators

In addition to arithmetical and logical operators, bitwise operators are used to modify indi-

vidual bits of a variable. Table 3.6 gives a list of the mikroC Pro for PIC bitwise operators.

These operators can only be used with integer type variables.

&

The ‘&’ operator performs the bitwise AND of its two operands. Each bit of the first oper-

and is ANDed with the corresponding bit of the second operand. The resulting bit is only 1 if

both of the two corresponding bits are 1, otherwise the resulting bit is set to 0. An example is

given below:

int x, y, z;

x = 0xF0E0; //x = “1111 0000 1110 0000”

y = 0x0F71; //y = “0000 1111 0111 0001”

z = x & y; //z = “0000 0000 0110 0000”

In this example, variable z takes the hexadecimal value 0�0060. The bitwise ANDing

operation is shown below:

x: 1111 0000 1110 0000

y: 0000 1111 0111 0001

z: 0000 0000 0110 0000 i.e. 0x0060

|

The ‘j’ operator performs the bitwise OR of its two operands. Each bit of the first operand

is Ored with the corresponding bit of the second operand. The resulting bit is 1 if either of the

corresponding bits are 1, otherwise the resulting bit is set to 0. An example is given below:

int x, y, z;

x = 0xF0E0; //x = “1111 0000 1110 0000”

y = 0x0F71; //y = “0000 1111 0111 0001”

z = x j y; //z = “1111 1111 1111 0001”

Table 3.6 mikroC Pro for PIC bitwise operators

Operator Operation

& Bitwise AND

j Bitwise OR

^ Bitwise EXOR

� Bitwise complement

<< Shift left

>> Shift right

C Programming Language 83

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, variable z takes the hexadecimal value 0�FFF1. The bitwise ORing oper-

ation is shown below:

x: 1111 0000 1110 0000

y: 0000 1111 0111 0001

-----------------–

z: 1111 1111 1111 0001 i.e. 0xFFF1

^

The ‘^’ operator performs the bitwise Exclusive OR of its two operands. Each bit of the

first operand is Exclusive Ored with the corresponding bit of the second operand. The result-

ing bit is 1 if only one of the corresponding bits is 1, otherwise the resulting bit is set 0. An

example is given below:

int x, y, z;

x = 0xF0E0; //x = “1111 0000 1110 0000”

y = 0x0F71; //y = “0000 1111 0111 0001”

z = x ^ y; //z = “1111 1111 1001 0001”

In this example, variable z takes the hexadecimal value 0�FF91. The bitwise Exclusive

ORing operation is shown below:

x: 1111 0000 1110 0000

y: 0000 1111 0111 0001

------------------–

z: 1111 1111 1001 0001 i.e. 0xFF91

~�

The ‘�’ operator performs the bitwise complement of its operand. Each bit is comple-

mented, thus a 0 becomes a 1, and a 1 becomes a 0. An example is given below:

int x, y;

x = 0xF0E0; //x = “1111 0000 1110 0000”

y = �x ; //y = “0000 1111 0001 1111”

In this example, variable y takes the hexadecimal value 0�0F1F. The bitwise complement

operation is shown below:

x: 1111 0000 1110 0000

------------------–

y: 0000 1111 0001 1111 i.e. 0x0F1F

<<

The ‘<<’ operator performs shift left. The operand is shifted left by n bits, where n is

specified by the programmer. The right-hand side of the variable LSB is filled with zeroes,

84 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

while bits at the left-hand side MSB are lost. Shifting a variable left by 1 bit is the same as

multiplying by 2, but the shift operation is much quicker. An example is given below:

int x, y;

x = 3;

y = x << 2; //y = 12

The actual shift left operation for the above example is shown in Figure 3.4.

>>

The ‘>>’ operator performs shift right. The operand is shifted right by n bits, where n is

specified by the programmer. The left-hand side of the variable MSB is filled with zeroes,

while bits at the right-hand side LSB are lost. Shifting a variable right by 1 bit is the same as

dividing by 2, but the shift operation is much quicker. An example is given below:

int x, y;

x = 12;

y = x >> 2; //y = 3

The actual shift right operation for the above example is shown in Figure 3.5.

3.2.17.4 Relational Operators

Relational operators are used in conditional operations that change the flow of control in a

program. A 1 is returned if the relational operation evaluates to TRUE, otherwise 0 is

Original number
1 1 0 0 0 0 0 0

Shifted left by 1 place
0 1 1 0 0 0 0 0

Shifted left by 2 places
0 0 1 1 0 0 0 0

Figure 3.4 Shifting left by 2 places

Original number
0 0 1 1 0 0 0 0

Shifted right by 1 place
0 1 1 0 0 0 0 0

Shifted right by 2 places
1 1 0 0 0 0 0 0

Figure 3.5 Shifting right by 2 places

C Programming Language 85

www.it-ebooks.info

http://www.it-ebooks.info/

returned. Table 3.7 gives a list of the mikroC relational operators. These operators are com-

mon to all programming languages, but the symbols used may change. It is important to note

that the equivalence operator ‘¼ ¼’ consists of two equal signs. A common mistake is to use

a single equal sign in a relational operator, which will be interpreted as an assignment

operator.

A few examples to the use of relational operators are given below:

x = 20;

x > 10; //Returns 1 (TRUE)

x <= 0; //Returns 0 (FALSE)

x != 5; //Returns 1 (TRUE)

3.2.17.5 Assignment Operator

The assignment operator ‘¼’ is used to assign the result of an expression to a variable. The

general format of the assignment operation is:

variable = expression;

In the following example, the sum of a and b are assigned to c:

c = a + b;

mikroC Pro for PIC also supports complex assignment operations, used when a variable

appears both on the left and right of the assignment operator. For example, consider the

expression below, where variable a is added to variable b and the result is stored back in

variable a:

a = a + b;

Using complex assignment operator, we can write the above statement as:

a += b;

Table 3.7 microC relational operators

Operator Operation

¼ ¼ Equal to

!¼ Not equal to

> Greater than

< Less than

>¼ Greater than or equal to

<¼ Less than or equal to

86 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Other useful assignment operators are:

-= subtraction

*= multiplication

/= division

&= AND

|= OR

>>= right shift

<<= left shift

^= exclusive OR

3.2.17.6 The Conditional Operator

The conditional operator (or ternary operator) is useful for evaluating conditional expres-

sions. This operator requires three operands and its general form is given below and is inter-

preted as follows: if expression1 is TRUE, then evaluate expression2 and assign to the

result, otherwise evaluate expression 3 and assign to the result.

result = expression1 ? expression2:expression3;

In the following example, the minimum of x and y is found and is assigned to min. Notice

that using brackets simplifies the expression:

min = (x < y) ? x:y;

In the following example, the absolute value of x is assigned to y. We can interpret this

expression as: if x is less than zero (i.e. negative) then change its sign (i.e. make it positive)

and assign to y, otherwise assign x to y (since it is already positive)

y = (x < 0) ? -x:x;

3.2.17.7 Preprocessor Operators

Any line in the source code with a leading ‘#’ character is known as a preprocessor operator,

or preprocessor directive. Traditionally, the preprocessor has been a separate program, which

runs before the main compilation process. However, with modern compilers, the pre-

processor is part of the main compiler and is automatically invoked at compilation time.

Preprocessor operators are useful when the programmer wants to insert files into a pro-

gram, when it is required to replace symbols or values with other symbols, or when it is

required to compile part of a program conditionally.

mikroC Pro for PIC supports the following preprocessor operators:

(null) #if

#define #ifdef

#elif #ifndef

C Programming Language 87

www.it-ebooks.info

http://www.it-ebooks.info/

#else #include

#endif #line

#error #undef

#define

The #define preprocessor operator is used at the beginning of a program and it is useful

when we wish to assign symbols to values. Some examples are given blow:

#define PI 3.14159

#define MAX 2000

#define GT >

#define MIN 0

It is important to realise that when the #define preprocessor operator is used, the compiler

substitutes the value for the symbol wherever it is used in the program. Also, an identifier

that has already been defined cannot be defined again. One way to get round this problem is

to un-define a definition using preprocessor operator #undef, as shown below:

#undef PI

Alternatively, we can use the existence of a definition using the #ifndef preprocessor oper-

ator, as shown below. Here, the definition of symbol PI is checked for existence. If it is not

defined, a definition is made, otherwise nothing else is done:

#ifndef PI

#define PI 3.14159

#endif

The #define preprocessor operator may include a number of optional parameters. An

example is given below:

#define SQR(x) ((x)*(x))

When symbol SQR is used in a program, (x) will be replaced with the square of it, that is

((x)�(x)). Thus, the following expression

a = SQR(b);

will evaluate into

a = ((b)*(b));

Some other examples are given below:

#define SUM(a,b) ((a) + (b))

#define CUBE(x) ((x) * (SQR(x)))

88 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

It is important to enclose the definitions on the right-hand side within the parenthesis for

the expressions to be expanded correctly. As an example, consider what may happen if

parenthesis is not used:

#define SQR(x) x*x

Now, suppose we use this definition in a statement such as

p = SQR(2 + 4)/4;

Now, the compiler will expand the above expression as

p = 2 + 4 * 2 + 4/4;

giving the wrong result 11 instead of the correct result of 9.

#include

The #include preprocessor operator is used to insert a file into the program. It is commonly

used at the beginning of a program to insert a header or a definition file into the program. In

the following example, file math.h is inserted into the program:

#include <math.h>

or

#include “math.h”

If the #include is used with the ‘< >’ version, the compiler searches the file in each of the

following locations, in the given order:

� the mikroC Pro for PIC installation folder ‘include’;
� user’s custom search path.

The ‘ ’ version searches the file in the following locations, in the given order:

� user project folder;
� mikroC Pro for PIC installation folder ‘include’;
� user’s custom search path.

It is also permissible to specify the search path explicitly, as shown in the following example:

#include “C:\My_Folder\math.h”

#if, #elif, #else, #endif

C Programming Language 89

www.it-ebooks.info

http://www.it-ebooks.info/

These are conditional assembly preprocessor operators. Using these operators, the pro-

grammer can force parts of a program to be compiled conditionally. For example, depending

on the type of microcontroller used, the programmer may wish to not compile part of a

program.

In the following example, the code section including variable FLAG is compiled if CPU is

100, otherwise this code section is omitted:

#if CPU == 100

FLAG = 1;

#endif

Similarly, in the following example, if CLOCK is 1 the first code block is compiled, other-

wise the second code block is compiled:

#if CLOCK == 1

A = 10;

B = 20;

#else

A = 1;

B = 2;

#endif

We can also use the #elif in conditional compilation, as shown in the following example.

Here, if Y_RES is less than 500, then the code X ¼ 200 is compiled, if Y_RES is between 500

and 1024, then the code X ¼ 300 is compiled, if Y_RES is greater than 1024, then the code

X ¼ 400 is compiled, otherwise the code X ¼ 500 is compiled:

#if Y_RES < 500

X = 200;

#elif Y_RES >= 500 && Y_RES < 1024

X = 300;

#elif Y_RES >= 1024

X = 400;

#else

X = 500;

#endif

Notice that each #if operator must match with a #endif operator. Any number of #elif

operators can be used between #if and #endif, but at most only one #else can be used.

3.2.18 The Flow of Control

Most statements in a program are executed sequentially one after the other. There are

many cases where in a program a decision is to be made about the operation that will

be performed next. The flow of control in a program can be modified using the flow of

control statements. These statements include modification of flow based on selection,

90 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

unconditional modification of the flow, and iteration statements. In this section, we shall

be looking at these statements that modify the flow of control in programs.

3.2.18.1 Selection Statements

The selection statements are based on modifying the flow of control conditionally. For exam-

ple, if a condition evaluates to TRUE, then a certain part of the program is executed, other-

wise a different part is executed.

There are two selection statements: if - else and switch.

if – else Selection Statements

The basic if statement has the following format, where the expression usually includes

logical and relational operators:

if(expression) statement;

In the following example, if variable p is equal to 10 then k is incremented by 1:

if(p == 10) k++;

Notice that because the white spaces are ignored in the C language, the statement can be

on a different line:

if(p == 10)

k++;

The if statement can be used together with else, such that if the expression is FALSE, then

the statement following else is executed. In the following example, if variable Total is equal

to MAX, then Sum is incremented by 1, otherwise Sum is decremented by 1:

if(Total == MAX) Sum++; else Sum–;

The above statement is usually written in the following form:

if(Total == MAX)

Sum++;

else

Sum–;

In some applications, we may need to execute more than one statement if a condition is

TRUE or FALSE. This is done by enclosing such statements inside a pair of curly brackets.

An example is given below:

if(Cnt > Sum)

{

i = k + 4;

j = j*2;

}

C Programming Language 91

www.it-ebooks.info

http://www.it-ebooks.info/

or

if(i == 10 && Cnt < 100)

{

r1 = 2*x;

r2 = i + 4;

}

else

{

r1 = 0;

r2 = 0;

}

3.2.18.2 switch Selection Statements

There are cases where we may want to do multi-way conditional tests. For example, in a

menu type application, the user’s choice is compared to a number of options, and a different

action is taken with each option. Such a program could normally be written using the if – else

type selection statements. However, when there are many options, the use of if – else makes

the program unreadable.

The switch statement is generally used in multi-way conditional tests. The general format

of this statement is:

switch (condition)

{

case condition 1:

statements;

break;

case condition 2:

statements;

break;

....................

....................

case condition n:

statements;

break;

default:

statements;

break;

}

The switch statement operates as follows: First, the condition is evaluated. If condition is

equal to condition 1, then statements following condition 1 are executed. If condition is

equal to condition 2, then statements following condition 2 are executed. This process con-

tinues until condition n, where if the condition is equal to condition n, then statements fol-

lowing condition n are executed. If condition is not equal to any of the conditions 1 to n, then

92 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

the statements following the default case are executed. Notice that the break statements in

each block make sure that we return to the end of the switch statements (after the closing

curly bracket) and jump out of the selection block. Without the break statements, the pro-

gram will continue to execute those statements associated with the next case. The last break

statement is not obligatory, as the switch block closes after this statement. The default case is

optional and can be avoided if we are sure that the condition will be equal to one of the

conditions 1 to n.

The following example shows part of a program implemented using both if-else and switch

selection statements. Functionally, the two codes are equal to each other:

if(x == 1) switch(x)

statement1; {

else if(x == 2) case 1:

statement2; statement1;

else if(x == 3) break;

statement3; case 2:

else statement2;

statement4; break;

case 3:

statement3;

break;

default:

statement4;

}

An example is given below, which shows how the switch selection statement can be used.

Example 3.1

It is required to write a program code using the switch statement to convert a hexadecimal character A

to F to its decimal equivalent. Assume that the input character is stored in a variable called chr, and the

output should be stored in variable y.

Solution 3.1
As you will remember, the decimal equivalents of hexadecimal digits are:

Hexadecimal Decimal

A 10

B 11

C 12

D 13

E 14

F 15

C Programming Language 93

www.it-ebooks.info

http://www.it-ebooks.info/

The required program code is given below:

switch (chr)

{

case ‘A’:

y = 10;

break;

case ‘B’:

y = 11;

break;

case ‘C’:

y = 12;

break;

case ‘D’:

y = 13;

break;

case ‘E’:

y = 14;

break;

case ‘F’:

y = 15;

break;

}

Example 3.2

The relationship between X and Y variables in an experiment are as follows:

X Y

1 1.5

3 3.5

5 4.0

7 5.0

9 7.5

Write a switch statement that will return the value of Y.

Solution 3.2
The required switch statement is:

switch (Y)

{

case 1:

X = 1.5;

break;

94 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

case: 3

X = 3.5;

break;

case 5:

Y = 4.0;

break;

case 7:

X = 5.0;

break;

case 9:

X = 7.5;

break;

}

3.2.18.3 Repetition Statements

Another fundamental building block in any programming language is the repetition, or loop-

ing construct. Here, one or a group of instructions are executed repeatedly, until some condi-

tion is satisfied. Basically, mikroC Pro for PIC language supports three types of repetition

statements: while, do – while and for loops.

3.2.18.4 while Statements

The general format of the while statement is:

while(expression) statement;

Here, the statement is executed as long as the expression is TRUE. In general, the number

of statements are more than one and curly brackets are used to enclose the statements:

while(expression)

{

statements;

}

In the following example, the loop formed using the while statement is repeated 10 times.

The loop control variable is i and is initialised to 0 before entering the loop. The statements

are executed as long as i is less than 10. Notice that inside the loop, the loop counter i is

incremented by 1 at each iteration:

i = 0;

while(i < 10)

{

statements;

i++;

}

C Programming Language 95

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3.3

Write a program to initialise an integer array called MyArray to zero. Assume that the array has 10

elements.

Solution 3.3
The required program is given below:

void main()

{

unsigned char i;

int MyArray[10];

i = 0;

while(i < 10)

{

MyArray[i] = 0;

i++;

}

}

When using the while statement, it is important to ensure that the condition that holds the

loop is changed inside the loop, otherwise an infinite loop is formed. The following is the

above program written in error that never terminates. The program repeatedly initialises ele-

ment 0 of the array:

void main()

{

unsigned char i;

int MyArray[10];

i = 0;

while(i < 10)

{

MyArray[i] = 0;

}

}

Sometimes it may be necessary to create infinite loops in our programs. This can easily be

achieved using the while statement, as shown below:

while(1)

{

statements;

}

96 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.18.5 do – while Statements

This is a useful variation of the while statement. The general format of the do – while state-

ment is:

do

{

statements;

} while(expression);

Here, the statements are executed as long as the expression is TRUE. The expression usu-

ally includes logical and relational statements. An example is given below, where the loop is

terminated 10 times:

i = 0;

do

{

statement;

i++;

} while(i < 10);

Notice again that the condition that holds the loop is changed inside the loop, so that the

loop is terminated after the required number of iterations. There is a difference between the

simple while and the do – while statements. The statements inside the while loop may never

be executed if the condition is FALSE. On the other hand, the statements inside the do –

while loop are executed at least once since the condition is tested at the end of the construct.

Some examples are given below, showing how the do – while loop can be constructed and

used in programs:

Example 3.4

Write a program to initialise an integer array called MyArray to 1. Assume that the array has 100

elements.

Solution 3.4
The required program is given below:

void main()

{

unsigned char i;

int MyArray[100];

i = 0;

do

{

MyArray[i] = 1;

i++;

} while(i < 100);

}

C Programming Language 97

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3.5

Write the loop code using do – while statement to copy a string called B to another string called A.

Solution 3.5
Remember that strings are character arrays terminated with a NULL character. The do – while loop

below will copy the contents of string B to A, including the NULL terminator. Note that i is incre-

mented after its value has been used as a subscript to B:

i = 0;

do

{

A[i] = B[i];

} while(B[i++] != ‘\0’);

When using the do – while statement, it is important to make sure that the condition that holds the

loop is changed inside the loop, otherwise an infinite loop is formed. The following is the above pro-

gram written in error that never terminates. The program repeatedly initialises element 0 of the array:

void main()

{

unsigned char i;

int MyArray[100];

i = 0;

do

{

MyArray[i] = 1;

} while(i < 100);

}

Sometimes it may be necessary to create infinite loops. This can easily be achieved using the do –

while statements, as shown below:

do

{

statements;

} while(1);

Example 3.6

Write a program to multiply two integer arrays X and Y having 10 elements each, and store the sum in

an integer variable called Sum.

Solution 3.6
The required program is given below:

void main()

{

int X[10], Y[10], Sum;

98 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

unsigned char i = 0;

Sum = 0;

do

{

Sum = Sum + X[i]*Y[i];

i++;

} while(i < 10);

3.2.18.6 for Statements

The for statement is the most commonly used statement for setting up loops in programs.

The general format of this statement is:

for(expression1; expression2; expression3) statements;

where expression 1 sets the initial value of the loop count and this variable is evaluated

just once on entry into the loop. Expression 2 is the condition that keeps the loop continuing.

This expression is evaluated at each iteration, to check whether or not the loop should con-

tinue. Expression 2 is usually a logical or relational operator. Expression 3 is also evaluated

at the end of each iteration and this expression changes value that is tested for loop termina-

tion. Expression 3 is usually an increment of the loop counter value.

The for loop is commonly used with more than one statement. An example is given below,

where the loop is repeated 10 times. The initial value of the loop counter i is 0, it is incre-

mented by 1 at each iteration, and the loop continues as long as i is less than 10:

for(i = 0; i < 10; i++)

{

statements;

}

Some examples of using the for statement are given below.

Example 3.7

Write a program to calculate the squares of numbers between 1 and 49 and store the results in an integer

array called Mult.

Solution 3.7
The required program is given below.

void main()

{

int Mult[50];

unsigned char i;

for(i = 1; i <= 49; i++)

{

Mult[i] = i*i;

}

}

C Programming Language 99

www.it-ebooks.info

http://www.it-ebooks.info/

The for loops can easily be nested, as shown in the following example. Here, all elements of a two-

dimensional array MyArray are initialised to 0 (assuming that the array dimension is 10). In this exam-

ple, the inner loop is repeated 10 times for each i value of the outer loop, that is the total number of

iterations is 100:

for(i = 0; i < 10; i++)

{

for(j = 0; j < 10; j++)

{

MyArray[i][j] = 0;

}

}

The parameters in a for loop can be omitted. There are several variations of the for loop, depending

upon which parameter is omitted. Some examples are given below:

To create an infinite loop:

for(;;)

{

statements;

}

Setting the initial loop condition outside the loop:

i = 0;

for(; i < 10;)

{

statements;

i++;

}

To terminate the loop from inside the loop:

i = 0;

for(;; i++)

{

statements;

if(i >= 10) break;

}

3.2.18.7 Premature Termination of a Loop

There are cases where we may want to terminate a loop prematurely. This is done using the

break statement. When the program encounters this statement, it forces an unconditional

jump to outside the loop. The break statement can be used with all repetition statements. An

100 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

example is given above with the for statement. In the following example, the loop is termi-

nated when variable p becomes 10:

p = 0;

while(p < 100)

{

statements;

p++;

if(p == 10) break;

}

3.2.18.8 The goto Statement

The goto statement can be used to alter the normal flow of control in a program. This state-

ment can either be used on its own or with a condition. The general form of using this state-

ment is:

statements;

Loop:

statements;

goto Label;

or

statements;

Loop:

statements;

if(condition) goto Label;

In the first form, the program jumps to the statement just after the label named LOOP. A

label can be any valid variable name and it must be terminated with a colon. In the second

example, the program jumps to the specified label if a condition is TRUE.

Excessive use of the goto statement is not recommended in programs, as it causes a pro-

gram to be unstructured and difficult to maintain. Very large and complex programs can be

written without the use of the goto statement. Perhaps the most useful application of the goto

statement is to prematurely terminate a program.

3.3 Functions in mikroC Pro for PIC

In general, it is a good programming practise to write a large complex program as a collec-

tion of smaller modules, where each module can be tested independent of the main code. A

function can be thought of as a self-contained, testable program code, developed to perform a

specific task. Functions are also created when it is required to repeat a certain algorithm at

several different places of the main program. For example, it may be required to convert the

temperature from �F into �C at several places in a program. Instead of repeating the code, it

is more efficient and the program is more maintainable if a temperature conversion code is

C Programming Language 101

www.it-ebooks.info

http://www.it-ebooks.info/

written in the form of a function. This function can then be called whenever it is required to

make the required conversion.

The general format of a function declaration is as follows:

type name(parameters)

{

body

}

Functions usually (not always) perform a certain operation and return data to the calling

program. The function type indicates the type of returned data, name is the name of the func-

tion, and the parameters (if any) should be separated by commas. The statements inside the

function should be enclosed within a pair of curly brackets.

An example function declaration is given below, which calculates the circumference of a

circle and returns to the calling program. Here, the radius of the circle is passed as an argu-

ment to the function:

float Circumference(float radius)

{

float c;

c = 2*PI*radius;

return c;

}

Assuming that we wish to calculate the circumference of a circle whose radius is 2.5 cm,

and store the result in a variable called Circ, the above function can be called, as shown

below:

Circ = Circumference(2.5);

Some more examples are given below.

Example 3.8

Write two functions to calculate the area and volume of a cylinder. Show how these functions can be

used in a program to calculate the area and volume of a cylinder whose radius and height are 3.0 and

12.5 cm, respectively. Store the area in variable c_area, and the volume in variable c_volume.

Solution 3.8
Figure 3.6 shows the two functions. Function Cyl_Area calculates the area of a cylinder. Similarly,

Cyl_Volume calculates the volume of a cylinder.

The main program calling these functions is shown in Figure 3.7. The radius and height of the cylin-

der are used as parameters to the functions. The area is stored in variable c_area, and the volume is

stored in variable c_volume.

3.3.1 Function Prototypes

If a function is not defined before it is used in the main program, then the compiler generates

an error. This is because the compiler does not know what type of data the function returns

and the type of its parameters. One way to avoid error messages is to create a function

102 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

prototype and declare it at the beginning of the program before the function is called by the

main program. A function prototype consists of the type and name of the function, followed

by the types of its parameters. An example function prototype declaration is given below:

float Circumference(float radius);

The name of the parameters are optional, and can be avoided as:

float Circumference(float);

Figure 3.8 shows how the program shown in Figure 3.7 can be modified to use function

prototypes. Here, the function prototypes are declared before the main program, and the two

functions are declared after the main program, before they are declared.

3.3.2 void Functions

A void function is one where the keyword void appears as the function’s type specifier, to

indicate that the function does not return any value to the calling program. Similarly, a func-

tion with no parameters is specified using the keyword void in its parameter list. Such a func-

tion is called with no parameters. An example void function is shown below, which simply

sets all PORT B output pins to a high state. This function has no parameters and does not

return any data:

void SET_LED(void)

{

PORTB = 0xFF;

}

//
// This function calculate the area of a cylinder. The radius and height
// are passed as parameters to the function
//

floatCyl_Area(float radius, float height)
 {

float c;
 c = 2*PI*radius*height;

return c;
 }

//
// This function calculate the volume of a cylinder. The radius and height
// are passed as parameters to the function
//

floatCyl_Volume(float radius, float height)
 {

float c;
 c = PI*radius*radius*height;

return c;
 }

Figure 3.6 Functions to calculate area and volume of a cylinder

C Programming Language 103

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.3 Passing Parameters to Functions

It is important to realise that whenever a function is called with parameters (except an array,

which is dealt with in the next section), all the parameters are passed to the function by value.

This means that the values of these parameters are copied to the function and used locally by

the function. The values of these parameters cannot be modified by the function. A simple

example is given in Figure 3.9, to clarify this concept:

/*---

This program calcultes the area and volume of a cylinder. The radius and height
of the cylinder are passed as parameters to two functions which calculate the
area and the volume.

In this example the radius and height are assumed to be 3.0cm and 12.5cm
respectively.

The area is stored in variable c_area, and the volume is stored in variable
c_volume.

Author: D. Ibrahim
Date: October, 2011
File: Cylinder.C
--*/
//
// This function calculates the area of a cylinder. The radius and height are passed
// as parameters to the function
//

floatCyl_Area(float radius, float height)
 {

float c;
 c = 2*PI*radius*height;

return c;
 }

//
// This function calculates the volume of a cylinder. The radius and height are
// passed as parameters to the function
//

float Cyl_Volume(float radius, float height)
 {

float c;
 c = PI*radius*radius*height;

return c;
 }

//
// Main program
//
void main()
{
 float r, h, c_area, c_volume;
 r = 3.0; // The radius
 h = 12.5; // The height
 c_area = Cyl_Area(r, h); // Calculate the area
 c_volume = Cyl_Volume(r, h); // Calculate the volume
}

Figure 3.7 Program to calculate the area and volume of a cylinder

104 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the value of the function parameter (a) was 5 before calling the function.

Inside the function, the local copy of this parameter is incremented to 6, but the value of this

parameter is still 5 in the main program. When the function returns, variable b is assigned to

value 6.

/*---

This program calcultes the area and volume of a cylinder. The radius and height
of the cylinder are passed as parameters to two functions which calculate the
area and the volume.

In this example the radius and height are assumed to be 3.0cm and 12.5cm
respectively.

The area is stored in variable c_area, and the volume is stored in variable
c_volume.

Author: D. Ibrahim
Date: October, 2011
File: Cylinder.C
--*/
float Cyl_Area(float, float);
float Cyl_Volume(float, float);
//
// Main program
//
void main()
{
 float r, h, c_area, c_volume;
 r = 3.0; // The radius
 h = 12.5; // The height
 c_area = Cyl_Area(r, h); // Calculate the area
 c_volume = Cyl_Volume(r, h); // Calculate the volume
}

//
// This function calculates the area of a cylinder
//

float Cyl_Area(float radius, float height)
 {

float c;
 c = 2*PI*radius*height;

return c;
 }

//
// This function calculates the volume of a cylinder
//

float Cyl_Volume(float radius, float height)
 {

float c;
 c = PI*radius*radius*height;

return c;
 }

Figure 3.8 Program in Figure 3.7 modified to use function prototypes

C Programming Language 105

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.4 Passing Arrays to Functions

In some applications, we wish to pass arrays to functions. Passing a single element of an array

is easy. All we have to do is index the element that we wish to pass. As described in the

previous section, such a variable is passed to a function as a value. For example, to pass index

5 of array MyArray to a function called Sum and store the return value in a, we simply write:

a = Sum(MyArray[5]);

Passing a complete array to a function is slightly more complicated. Here, we simply write

the name of the array in the calling program. In the function header we have to declare an array

of same type followed with a pair of empty brackets. It is important to realise that we are not

copying the entire array to the function, but simply passing the address of the first element of the

array, which is also equal to the name of the array. Because the address is passed to the function,

the array elements are said to be passed by reference. As a result, the original array elements can

be modified inside the function. An example is given below, to illustrate the process.

Example 3.9

Write a program to load an integer array called N with values 1 to 10. Then call a function to calculate

the sum of the array elements and return the sum to the calling program.

Solution 3.9
The required program listing is given in Figure 3.10. Integer array N is initialised with values 1 to 10 in

the main program. Then, function Sum is called and the array is passed to this function. The function

calculates the sum of the array elements and returns the sum in variable s in the main program. Notice

that the array is called N in the main program, but A in the function.

3.3.5 Interrupt Processing

mikroC Pro for PIC supports interrupts in user programs. When an interrupt occurs, the

processor stops whatever it is doing and jumps to the interrupt service routine (ISR). The

floatInc(float x)
{
 x++;

return x;
}

//
// Main program
//
void main()
{

float a, b;
 a = 5.0; // a = 5.0
 b = Inc(a); // a = 5.0, b = 6.0
}

Figure 3.9 Passing parameters by value

106 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

PIC18 series of microcontrollers support both low-priority and high-priority interrupts. High-

priority interrupts in mikroC Pro for PIC are handled as user functions, where the reserved

word interrupt should be used as the function name. An example ISR is shown below:

void interrupt(void)

{

ISR body

}

Low-priority interrupts are declared using the keyword interrupt_low:

void interrupt_low(void)

{

ISR body

}

/*---

This program demonstrates hown an array can be passed to a function. Here,
array N is initialized with numbers 1 to 10. Then, function Sum is called to
calculate the sum of the array elements. The sum is then returned to the main
program and stored in variable s

Author: D. Ibrahim
Date: October, 2011
File: Sum.C
--*/
//
// This function calculates the sum of the elements of an array
//

intSum(int A[])
 {

char i;
int Total = 0;

for (i = 0; i < 10; i++) Total = Total + A[i];
return Total;

 }

//
// Main program
//
void main()
{

int s, N[10];
char i;

for (i = 0; i < 10; i++) N[i] = i + 1; // Initialize array N
s = Sum(N); // Calculate the sum of elements

}

Figure 3.10 Passing an array to a function

C Programming Language 107

www.it-ebooks.info

http://www.it-ebooks.info/

In the PIC18 microcontroller family, the FSR register contents are saved when an interrupt

occurs and these registers are restored after returning from the ISR. We can use the following

statement to instruct the compiler not to save/restore the register values during an interrupt

(except the STATUS, WREG and BSR registers will be saved in high-priority interrupts).

#pragma disablecontextsaving

Notice that functions can be called from interrupt service routines.

It is also permissible to give any other name to an interrupt service routine, by using the

keyword iv. The vector address of the ISR must be declared in such cases. An example is

given below, which gives the name MyISR to a high-priority interrupt:

void MyISR() iv 0x00008

{

ISR body

}

3.4 mikroC Pro for PIC Built-in Functions

mikroC Pro for PIC compiler includes a set of built-in library functions that can be used in

programs. A list of these functions are given in Table 3.8. There is no need to use header files,

except for the functions Lo, Hi, Higher and Highest, where the header file build_in.h should

be included in the program. Built-in functions are implemented as inline, that is the function

code is generated at the point of declaration in the program and the function is not called. The

only exceptions to this rule are functions Vdelay_ms, Delay_Cyc and Get_Fosc_kHz.

Functions Lo, Hi, Higher and Highest are used to extract bytes from integers and long

integers, as shown in the following example:

a = 0x102578FE;

b = Lo(a); //b = 0xFE

c = Hi(a); //c = 0x78;

Table 3.8 mikroC Pro for PIC built-in functions

Function Description

Lo Returns the lowest byte of a number (bits 0 to 7)

Hi Returns next to the lowest byte of a number (bits 8 to 15)

Higher Returns next to the highest byte of a number (bits 16 to 23)

Highest Returns the highest byte of a number (bits 24 to 31)

Delay_us Creates software delay in microsecond units

Delay_ms Creates constant software delay in millisecond units

Vdelay_ms Creates delay in milliseconds using program variables

Delay_Cyc Creates delay based on microcontroller clock

Clock_Khz Returns microcontroller clock in KHz

Clock_Mhz Returns microcontroller clock in MHz

108 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

d = Higher(a); //d = 0x25;

e = Highest(a); //e = 0x10;

Functions Delay_us and Delay_ms can be used to generate microseconds and seconds

delays in programs. For example, to generate a 1 second delay, we can write:

Delay_ms(1000);

Function Vdelay_ms is similar to Delay_ms, but here the delay count is a variable, as

shown in the following example:

MyDelay = 1000;

Vdelay_ms(MyDelay);

Function Delay_Cyc generates a delay based in the microcontroller clock. The generated

delay lasts for 10 times the function parameter in microcontroller cycles. In the following

example, the generated delay is 100 microcontroller clock cycles:

Delay_Cyc(10);

Functions Clock_kHz and Clock_Mhz return the microcontroller clock frequency in kHz

and in Mhz, respectively, nearest to an integer. These functions have no parameters. An

example use is shown below:

clk = Delay_kHz();

3.5 mikroC Pro for PIC Libraries

One of the strong points of mikroC Pro for PIC compiler is that it provides a very rich set of

library functions. These functions can be called from user programs without having to use

header files. Some of the libraries are hardware specific, such as the USART library, CAN

library, PS/2 library, and so on. Some libraries provide ANSI C functions, such as string

handling, mathematical functions, and so on. Some libraries provide general purpose func-

tions, such as string conversion, trigonometric functions, time functions, and so on.

Table 3.9 gives a list of the mikroC Pro for PIC libraries. Each library contains a set of

functions, and some libraries contain additional libraries. In this section, we shall be looking

at the ANSI C library and the Miscellaneous library, which are one of the commonly used

libraries. The display libraries (LCD, GLCD, etc.) will be covered in detail in later chapters

of this book. Further information can be obtained from the mikroC Pro for PIC manual.

3.5.1 ANSI C Library

The ANSI C library contains the following libraries:

� Ctype Library: contains functions for testing characters and converting to upper or

lowercase;

C Programming Language 109

www.it-ebooks.info

http://www.it-ebooks.info/

� Math Library: contains functions to perform mathematical operations, such as trigono-

metric functions sine, cos, tan, logarithms, square-root, and so on;
� Stdlib Library: contains functions to convert ASCII characters to integers and vice versa;
� String Library: contains functions to append two strings, compare two strings, return the

length of a string, and so on.

Example 3.10

Write a function to convert lowercase characters in a string to uppercase, using the mikroC Pro for PIC

Ctype library function toupper.

Table 3.9 mikroC Pro for PIC libraries

Library Description

ADC Analogue to digital conversion functions

CAN CAN Bus functions

CANSPI SPI based CAN Bus functions

Compact Flash Compact Flash memory functions

EEPROM EEPROM memory read/write functions

Ethernet Ethernet functions

SPI Ethernet SPI based Ethernet functions

Flash Memory Flash Memory functions

Graphics LCD Standard Graphics LCD functions

T6963C Graphics LCD T6963 based Graphics LCD functions

I2C I2C bus functions

Keypad Keypad functions

LCD Standard LCD functions

Manchester Code Manchester Code functions

Multi Media Multi Media functions

One Wire One Wire functions

PS/2 PS/2 functions

PWM PWM functions

RS-485 RS-485 communication functions

Sound Sound functions

SPI SPI bus functions

USART USART serial communication functions

Util Utilities functions

SPI Graphics LCD SPI based Graphics LCD functions

Port Expander Port expander functions

SPI LCD SPI based LCD functions

ANSI C Ctype C Ctype functions

ANSI C Math C Math functions

ANSI C Stdlib C Stdlib functions

ANSI C String C String functions

Conversion Conversion functions

Trigonometry Trigonometry functions

Time Time functions

110 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Solution 3.10
The required program listing is shown in Figure 3.11. Function Conv_Upper receives the address of the

string to be converted into uppercase. A while loop is used to convert each character of the string to

uppercase using the library function toupper.

3.5.2 Miscellaneous Library

This library contains functions to convert bytes, integers, longs and floating point variables to

strings. These functions are used in displays when it is required to display strings or numeric

values. An example is given below.

Example 3.11

Use the Miscellaneous library function ByteToStr to convert a character to a string.

Solution 3.11
The ByteToStr function has two parameters: the byte to be converted, and the address of the string

where the converted data will be stored. At least 4 bytes must be reserved for the output string. The

required code is given below:

char Txt[4]; //Output string

char i = 50; //Byte to be converted

ByteToStr(i, Txt); //Txt now contains 50 as a string

3.6 Using the mikroC Pro for PIC Compiler

This book is based on the mikroC Pro for PIC compiler, developed by mikroElektronika

(www.mikroe.com). A 2 KB size limited demo version of the mikroC Pro for PIC compiler

is available from the developers’ Web site. This demo version should be sufficient for most

/---

This function converts a string to upper case. The address of the string to be converted
Is passed to the function as a parameter. A while loop is formed to convert each character
To upper case using the toupper library function.

Programmer: D. Ibrahim
File: Conv_Upper.C
Date: October, 2011
---*/

voidConv_Upper(unsigned char *p)
{

while(*p != ‘\0’) *p++ = toupper(*p);
}

Figure 3.11 Program for Example 3.10

C Programming Language 111

www.it-ebooks.info

http://www.it-ebooks.info/

small to medium, non-graphical applications. Alternatively, it is recommended that you pur-

chase a full licence of the compiler for developing complex and graphical LCD based

applications.

In this section we will be looking at the actual program development, compilation and

simulation processes using the mikroC Pro for PIC IDE. After installing the compiler, an

icon should appear by default on your Desktop. You should double-click this icon to start the

IDE.

3.6.1 mikroC Pro for PIC IDE

After starting the mikroC Pro for PIC, the screen shown in Figure 3.12 will be displayed. The

main screen is in two parts. The upper larger part, known as the Code Editor Window, is the

main screen where programs are written. The lower part is known as the Message Window.

On the left-hand margin, there are two sliding menus called Project Settings and Code

Explorer. On the right-hand margin, there are four sliding windows called Library Manager,

Routine List, Project Manager and Project Explorer. Clicking on a sliding window opens

the window. Now we briefly look at the functions of various windows.

3.6.1.1 The Code Editor Window

This Code Editor is an advanced text editor and programs are written in this window. The

Code Editor supports:

� Code Assistant;
� Parameter Assistant;
� Code Template;
� Bookmarks.

The Code Assistant is useful when writing a program. Type the first few letters of an iden-

tifier and press the CTRLþSPACE keys together to obtain a list of all the identifiers begin-

ning with the letters written. For example, type adc and press CTRLþSPACE keys. You

should see a pop-up window, as shown in Figure 3.13, showing all the identifiers beginning

with letters adc. Move the cursor up and down to highlight the required identifier and press

the ENTER key to make a selection.

The Parameter Assistant is useful when writing programs. When a parenthesis is opened

after a function name or an identifier, the Parameter Assistant is invoked automatically to

show the type of expected parameters. Figure 3.14 shows an example where the identifier

strlen is typed followed by a parenthesis. Here, the expected type is shown to be unsigned

char �s.
The Code Template is used to generate code templates in our programs. Using this feature

can save us typing long keystrokes. An example is given in Figure 3.15. Here, assume that

we wish to create a loop using the do – while statements. The identifier do is typed first,

followed by pressing CTRLþJ keys simultaneously. A pop-up window shows any options

available. By highlighting the required option and pressing the ENTER key, the template for

the do – while repetition statement is created.

112 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

C Programming Language 113

Figure 3.12 mikroC Pro for PIC IDE screen

www.it-ebooks.info

http://www.it-ebooks.info/

Bookmarks make navigation through a large code easier. To set a bookmark, use the key

combination CTRLþShiftþNumber. The same principle applies to the removal of the book-

marks. To jump to a bookmark, use the key combination CTRLþNumber. For example, in

Figure 3.16, a book mark with number 5 is placed on line 36 of the code by typing

CTRLþShiftþ5. Notice that the bookmark line is identified by the bookmark number, fol-

lowed by an arrow in the left-hand margin. Then, by typing CTRLþ5 from anywhere in the

program, the cursor will jump to the point where bookmark 5 was placed.

Figure 3.13 The Code Assistant

Figure 3.14 The Parameter Assistant

Figure 3.15 The Code Template

Figure 3.16 Showing bookmark 5

114 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The Code Editor window has a menu at the top and a large number of toolbars for select-

ing various options. Figure 3.17 shows some of the most commonly used toolbars of this

window.

3.6.1.2 The Message Window

The Message window consists of two tabs: the Messages and Quick Converter. When the

Messages tab is selected (see Figure 3.18), the window displays information about the cur-

rent compilation, such as the compile time, amount of program and data memory used, and

any error messages. The Quick Converter window is useful for converting numbers from

different bases, and for floating point number conversions. In Figure 3.19, an example is

shown, where decimal number 65 is converted into various bases.

3.6.1.3 The Project Settings Window

With the Project Settings window you can define the microcontroller type, the clock fre-

quency, and the build/debugger type to be used in the project. Figure 3.20 shows an example

where the device type is PIC16F887, the clock frequency is 8.0 MHz, the build type is

Release, and the debugger type is Software.

3.6.1.4 The Code Explorer Window

The Code Explorer window gives a clear view of each item declared inside the source code.

You can jump to a declaration of any item by right clicking it. Also, besides the list of

defined and declared objects, code explorer displays message about first error and its location

in code. Figure 3.21 shows an example code explorer window.

3.6.1.5 The Library Manager Window

The Library Manager window enables the user to add or remove libraries from a project.

Figure 3.22 shows part of the library manager window.

3.6.1.6 The Routine List Window

The Routine List window displays a list of all the routines (functions) used in a program,

with the line numbers where they are used. In Figure 3.23, only function main is used in the

Figure 3.17 Commonly used toolbars

C Programming Language 115

www.it-ebooks.info

http://www.it-ebooks.info/

F
ig
u
re

3
.1
8

T
h

e
M

es
sa

g
e

w
in

d
o
w

116 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

program and it appears at line 26 of the program. The list can be sorted either in line number

order, or in name order.

3.6.1.7 The Project Manager Window

The Project Manager window allows users to manage multiple projects. In general, several

projects, which together make a large project group, may be open at the same time. Only one

of them may be active at any one moment in time. Setting a project in active mode is

Figure 3.19 The Quick Converter window

Figure 3.20 Project settings window

C Programming Language 117

www.it-ebooks.info

http://www.it-ebooks.info/

performed by double clicking on the desired project in the Project Manager window. An

example project manager window is shown in Figure 3.24.

3.6.1.8 The Project Explorer Window

The Project Explorer window is a collection of program examples for various development

boards, PIC microcontroller chips, and various interesting routines. An example window is

shown in Figure 3.25.

3.6.2 Creating a New Source File

A mikroC Pro for PIC project may consist of several files, such as source files, listing files,

hex files, assembler files, configuration files, and so on. All the files related to a project are

stored in a project file having the extension ‘.mcppi’. C source files created by the user have

extensions ‘.c’. In this section we shall be looking at an example and learn step by step how

to create a new source file.

Example 3.12

Write a C program to calculate and display the squares of numbers from 1 to 10 on PORT C of a micro-

controller. Assume that a PIC16F887 type microcontroller is to be used with 8.0 MHz clock, and the

filename is sum.c.

Solution 3.12
The step-by-step solution is given below:

Step 1: Start mikroC Pro for PIC IDE by double clicking on the icon in Desktop.

Figure 3.21 Code Explorer window

118 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3.22 Library Manager window

Figure 3.23 Routine List window

C Programming Language 119

www.it-ebooks.info

http://www.it-ebooks.info/

Step 2: Create a new project by clicking Project -> New Project-> Next and enter a project name

(here SUM is chosen), choose a project folder (here folder Alevs is chosen), select device type as

PIC16F887 and the clock rate 8.0 MHz. Figure 3.26 shows the new project window.

Step 3: Click Next and Next again as the source file is not ready and we will be writing it using

the mikroC Pro for PIC editor. Select all libraries for the project, as shown in Figure 3.27.

Figure 3.24 Project Manager window

Figure 3.25 Project Explorer window

120 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3.26 New project window

Figure 3.27 Selecting all files

C Programming Language 121

www.it-ebooks.info

http://www.it-ebooks.info/

Step 4: Click Next and Finish to complete the new project creating steps. You should now see a blank

IDE. Enter the following program into the Code Editor section of the IDE:

/*-----------–-------------–----------–-------------–-----

Squares of Numbers 1 to 10

---------–-------–-----

This program calculates and displays the squares of integer numbers

from

1 to 10 on PORT C of a PIC16F887 microcontroller.

Programmer: D. Ibrahim

File: Sum.C

Date: October, 2011

-----------–-------------–----------–-------------–------*/

void main()

{

unsigned char i, Squares;

TRISC = 0; //Configure PORT C as output

for(i = 1; i <=10; i++)

{

Squares = i*i; //Calculate the square

}

PORTC = Squares; //Send result to PORT C

}

PIC microcontroller input-output port pins are bi-directional. Notice in this example that PORT C

input-output pins are configured as output by clearing the TRISC register. A zero in a TRIS register bit

position forces the corresponding PORT pin to be an output. Similarly, a 1 in a TRIS register bit posi-

tion forces the corresponding PORT pin to be an input.

Figure 3.28 shows the program in the Code Editor window.

3.6.3 Compiling the Source File

To compile the program, either click the Build toolbar shown in Figure 3.17, or press keys

CTRLþF9 simultaneously. Any compilation errors will be displayed in the Message window

at the bottom part of the screen. If there are no errors then the message, Finished success-

fully, will be displayed, followed by the current date and time.

After a successful compilation, the compiler generates the Hex file that can be down-

loaded to the target microcontroller using a programmer device. Many companies offer

microcontroller development kits with built-in programmers. For example, the easyPIC6 is a

PIC microcontroller development board with built-in programmer and debugger. This kit

is fully compatible with the mikroC Pro for PIC compiler. Programs compiled using the

mikroC Pro for PIC compiler can easily be loaded to the target microcontroller on the

easyPIC6 development board.

The Hex file for this example is shown in Figure 3.29.

122 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3.7 Using the mikroC Pro for PIC Simulator

mikroC Pro for PIC IDE includes a powerful and easy-to-use simulator that can be extremely

useful during program development and testing. The simulator is a program and does not

need any hardware for its operation. Using the simulator we can step through a program,

observe and, if required, change the values of variables as the program is running, insert

break-points in the program and run the program until the break-point is hit, and so on.

An example use of the simulator is given below, step by step, by considering the program

developed in Example 3.12.

Figure 3.28 Program in the Code Editor window

:020000002F28A7
:0E0006008312031321088A00200882000800DC
:10001400831203137008F100F0010830FC0071082A
:10002400F40C03181928FC0B1228F10100340310F6
:100034001E28F40C0318F107F10CF00CFC0B1B2820
:020044000800B2
:1000460003208A110A128000840AA00A0319A10A51
:08005600F003031D232808003C
:10005E0083160313870101308312A20022080A3C83
:10006E00031C42282208F0002208F4000A2070081F
:0C007E00A300A20A3528230887004428AC
:04400E00F72F000781
:00000001FF

Figure 3.29 The generated Hex file

C Programming Language 123

www.it-ebooks.info

http://www.it-ebooks.info/

Step 1: Compile the program by making sure that the Build Type is set to Release and the

Debugger is set to Software in the Project Settings window.

Step 2: From the drop-down menu select Run -> Start Debugger, or press the F9 function

key. You will now see the simulator window on the right-hand side. A blue bar across the

screen on the left-hand side points to the first executable statement in our program.

Step 3: Select the variables to be monitored using the simulator window. In this example,

we wish to monitor the values of variable Squares and PORTC.

Click to open the list box Select variable from list: under Watch Values in the simulator

window. Select variable Squares from the list box. Then click Add under Watch Values to

add this variable to the monitor list. Repeat for the PORTC. You should now have the

simulator window, as in Figure 3.30.

Step 4: We are now ready to single-step our program and observe values of the selected

variables as the program is running. Press function key F8 to single-step through the pro-

gram. The blue bar should move to the for statement. Pressing F8 again should execute

this statement and the blue bar should move to statement where the square of the number

is calculated. Pressing F8 again will execute this statement. The value of variable Squares

will change to 1 in the Simulation window. Keep pressing F8 and you will see the value of

Squares changing. The value of any variable can also be displayed by moving the cursor

over the variable. For example, move the cursor over variable i to see its value at any

instant in time. After executing the loop 10 times you should see that the final value of

Squares is 100 and PORT C is also set to this value. Figure 3.31 shows the Simulator

window at the end of the simulation.

3.7.1 Setting a Break-Point

Break-points are useful when we want to execute the program up to a point and then display

(or change) the variables at this point. In this example we will set a break-point at the state-

ment, which sends the value of Squares to PORTC. The steps are given below:

Figure 3.30 The simulator window

124 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Step 1: Start the simulator and select the variables to be monitored, as described in steps 1–3

before.

Step 2: Place the cursor on the line where a break-point is to be placed and select Run ->
Toggle Breakpoint from the drop-down menu (or press the F5 function key). A red bar

will appear on the line where the break-point is placed, and a red dot will be displayed on

the line at the left-hand margin, as shown in Figure 3.32.

Step 3: Select Run -> Run/Pause debugger (or press function key F6) to run the program

until the break-point is hit. At this point you should see that variable Squares has value

Figure 3.31 End of the simulation

Figure 3.32 Setting a break-point

C Programming Language 125

www.it-ebooks.info

http://www.it-ebooks.info/

100 and PORTC has value 0. Press F8 to execute the next statement, which will set

PORTC to 100.

To remove all the break-points, select Run -> Clear Breakpoints (or press

SHIFTþCTRLþF5) from the drop-down menu. To remove a specific break-point, click on

the red dot at the left-hand line margin where the break-point is placed.

3.8 Other mikroC Pro for PIC Features

mikroC Pro for PIC IDE includes a number of useful features for programmers. Some of

these features are described briefly in this section.

3.8.1 View Statistics

This window shows the variables, memory usage and function usage in our program. Select

View -> Statistics from the drop-down menu (or click the toolbar as shown in Figure 3.17).

Figure 3.33 shows the memory usage statistics in graphical form for the Example 3.11. In

this example, 98.6% of the data memory and 99.2% of the program memory are free.

Figure 3.33 Memory usage statistics

126 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3.8.2 View Assembly

This window is selected by View -> Assembly from the drop-down menu and it shows

the Assembly listing of our program. Figure 3.34 shows part of the Assembly listing of

Example 3.12.

3.8.3 ASCII Chart

The ASCII chart can be displayed by clicking toolbar ASCII Chart.

3.8.4 USART Terminal

A USART terminal is available by clicking toolbar USART Terminal. This terminal is useful

when developing serial RS232 based projects.

3.8.5 Seven Segment Editor

The 7-segment editor is displayed by clicking the 7 sign on the toolbars. The editor is

useful when we need to create fonts using the 7-segment displays. An example is shown

in Figure 3.35.

Figure 3.34 Assembly listing of Example 3.12

C Programming Language 127

www.it-ebooks.info

http://www.it-ebooks.info/

3.8.6 Help

The help window could be useful when we are looking for help on compiler specific issues.

This window is selected from the toolbars (see Figure 3.17).

3.9 Summary

mikroC Pro for PIC is one of the most commonly used high-level languages for program-

ming PIC microcontrollers. This chapter presented a brief introduction to the mikroC Pro for

PIC language.

Variables in a mikroC Pro for PIC language store values during running of a program and

they can be 8-bit, 16-bit, 32-bit or floating point. Variables are stored in the data memory of

the target microcontroller. Constants, on the other hand, are variables that have fixed values

and they are stored in the flash memory (program memory) of the target microcontroller.

mikroC Pro for PIC supports several statements for changing the flow of control in a pro-

gram, such as if, else, do, while, switch and break statements.

Pointers are useful features of the C language and they are used to store the memory

addresses of variables. By using pointers, we can easily pass data to functions and manipu-

late arrays.

The mikroC Pro for PIC IDE is a powerful and easy-to-use environment for creating, edit-

ing and compiling our programs. In addition, the IDE supports simulation and debugging

features, which helps in the development and testing of programs. The use of the simulator

has been described in this chapter, step by step, in a tutorial fashion.

The mikroC Pro for PIC IDE supports some other useful features, such as memory, func-

tion and variable usage statistics, Assembly listing of the created program, 7-segment dis-

play font creation, RS232 USART terminal, ASCII listing, EEPROM editor, online Help,

and so on.

Figure 3.35 The Seven Segment Editor

128 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

3.1 What does program repetition mean? Describe the operation of for, while and do –

while loops in C.

3.2 Write a program to calculate the sum of numbers from 1 to 10 and send the result to

PORT C of a PIC microcontroller.

3.3 Write a function to calculate the squares of numbers between 1 and 10 and store the

results in an array passed as a function parameter.

3.4 What can you say about the following while loop?

i = 10;

while(i < 100)

{

Sum++;

j = Sum;

}

3.5 Write a program to calculate the sum of even numbers between 0 and 100.

3.6 Write a function to calculate the volume of a cube. Show how this function can be

called from a main program.

3.7 Write a function to convert inches to centimetres. Show how this function can be

called from a main program to convert 12 inches to centimetres.

3.8 Write a function to add two vectors of dimensions 15, passed as parameters to the

function.

3.9 Write two functions to convert temperature from Fahrenheit to Celsius and vice-versa.

Show how the two functions can be combined.

3.10 Find the errors in the following program:

void main()

{

chr i;

integer j;

for(i = 0; i < 10; i+)

{

j++;

}

Total = j;

3.11 What is an array? How are arrays defined? Write example statements to define an

array of 50 integers.

3.12 Using a for loop, write a program to initialise the elements of an array to 1. Assume

that the array dimension is 30.

3.13 How is the text string ‘Computer’ represented in C? Describe different ways of

declaring this string in a program.

3.14 Write a function to receive a string and then to convert first the character of this string

to uppercase.

C Programming Language 129

www.it-ebooks.info

http://www.it-ebooks.info/

3.15 Write a function to check whether or not the first character of a string is uppercase.

Return 1 if it is upper case, otherwise return 0.

3.16 Write a function to calculate the number of spaces in a character string and return this

number as an integer.

3.17 Write a function to join two strings whose addresses are supplied as function

parameters.

3.18 What is wrong with the following code?

char i, j;

for(i = 0; i < 2500; i++) j++;

3.19 Re-write the following expressions in a different way, to remove the logical NOT:

a) !(b > 3) b) !((a + b) == c) c) !(x == 30)

3.20 Write the equivalent if-else statements for the following tests:

a) (a > b) ? 2: 1 b) (a == 10) ? 0:1 c) ((a + b) > 2) ? 1:0

3.21 What is a void function? Describe with an example.

3.22 What is a function prototype? Describe with an example.

3.23 How would you use the sizeof operator to calculate the storage requirements of a

structure? Give an example.

3.24 What will be the value of variable Total in the following example?

Total = 100;

for(i = 0; i <10; i++)Total--;

3.25 What will be the value of variables x and y after the following expressions are

executed?

x = 12;

a) y = --x b) y = x++ c) y += x

3.26 Given that ptr is a pointer to an integer variable, what are the results of the following

expressions?

a) *ptr b) *(ptr + 1) c) ptr + 2

130 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

4

PIC Microcontroller Development
Tools – Including Display
Development Tools

The development of a microcontroller based system used to be a difficult task, but nowadays

this task is simplified considerably with the availability of many development tools. In gen-

eral, the development tools are hardware and software based, although much of the tools are

nowadays integrated, enabling the user to easily create a program, test it, and load it to the

target hardware with the click of a button.

The tools for creating a microcontroller based project include visual text editors, assem-

blers, compilers, simulators, in-circuit debuggers, emulators, device programmers and

development kits.

A typical project development cycle starts with designing the hardware. Then the program

is written using a text editor. The Windows operating system is distributed with a text editor

called the Notepad. Note that you cannot use the Word program as a text editor, as the writ-

ten text is embedded with special control characters. The assemblers or compilers do actually

contain built-in text editors that can be used for program development. The developed pro-

gram is then converted into a form that can be understood by the microcontroller using an

assembler or a compiler. Some large programs consist of several modules and such modules

are combined using a linker program. The final program is then usually simulated in soft-

ware. Simulation is an invaluable tool, as it helps the programmer to detect any errors in

early stages of the software development. Using the simulator program, the programmer can

step through the code and observe the values of variables, or change them as required and

make sure that the program is actually doing what it is supposed to do. Once the programmer

is happy with the developed code, the code can be loaded into the program memory of the

target microcontroller using either device programmer hardware or a development kit. The

program is then tested on the actual hardware using various hardware tools such as an in-

circuit debugger or an emulator. With the help of these tools, the programmer can observe

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

the values of variables and registers as the program is running either in single step mode or in

real-time run mode.

Nowadays, most companies offer integrated hardware and software packages where tools

such as editors, assemblers, compilers and simulators are collected under a single software

development tool. The in-circuit debuggers and device programmers are then available on a

development kit. Users can develop their programs, and then compile and simulate the pro-

gram with the help of the software development tools. Once the program is working, the

executable code is transferred to the target microcontroller chip with the help of a device

programmer or usually a hardware development board. This process is usually done with

the click of a button. The development kit contains the target microcontroller, and in addi-

tion, various peripheral devices to help test the program, such as LEDs, LCDs, push-button

switches, power supply, in-circuit debugger, and so on.

In this chapter we will be briefly looking at some of the commonly used PIC microcontrol-

ler hardware development boards. In addition, some of the popular display development

boards will be investigated.

4.1 PIC Hardware Development Boards

Microcontroller development boards are available in many shapes and sizes. Some simple

boards include a microcontroller, clock circuitry, power supply and a few LEDs. Some more

advanced boards contain LCDs, graphics LCDs (GLCDs), push-button switches, USB ports,

CAN bus ports, serial communication ports, in-circuit-debugging module, and so on.

Some of the commonly used development boards and their specifications are described in

this section.

4.1.1 Super Bundle Development Kit

The Super Bundle development kit (see Figure 4.1), manufactured by microEngineering

Labs Inc., is a complete integrated development board with the following features:

� PICBASIC PRO compiler;
� MicroCode Studio Plus integrated development environment with in-circuit debugger;
� LAB-X1 experimenter board with 5V power supply, 40-pin ZIF socket, oscillator, reset

circuit, LEDs, LCD, serial EEPROM, real-time clock, temperature sensor, servo drive,

RS232/RS485 ports, IR interface, speaker and prototyping area;
� microcontroller programmer and programming adaptor;
� mains adaptor, USB cable and serial cable.

4.1.2 PIC18 Explorer Board

The PIC18 Explorer Board (see Figure 4.2) manufactured by Microchip Inc., can be used in

the development of PIC18 microcontroller based projects. The board contains:

� sample PIC18F8722 and PIC18F87J11 (plug-in module) microcontrollers;
� 28–80 pin microcontroller support;

132 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4.1 Super Bundle development kit. (Reproduced with permission from microEngineering

Labs)

Figure 4.2 PIC18 Explorer board. (Reproduced with permission from Microchip Inc)

PIC Microcontroller Development Tools 133

www.it-ebooks.info

http://www.it-ebooks.info/

� LEDs and LCD display;
� expansion board connector (PICtail), enabling a large number of external boards to be

connected;
� crystal oscillator;
� potentiometer (connected to A/D converter);
� USB and RS232 interface;
� programmable power supply;
� temperature sensor;
� MPLAB, ICD3 and REAL ICE connectors;
� SPI EEPROM;
� prototyping area.

4.1.3 PIC18F4XK20 Starter Kit

This board (see Figure 4.3) is manufactured by Microchip Inc., and can be used as a demon-

stration and learning board. The board contains

� PICkit 2 programmer/debugger;
� 128/64 Organic LED display;
� 32.768 kHz external clock;
� 4 push-button switches;
� 8 LEDs Serial EEPROM;

Figure 4.3 PIC18F4XK20 Starter Kit. (Reproduced with permission from Microchip Inc)

134 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� daughter board (PICtail) for connecting external boards;
� potentiometer;
� Analogue in/out;
� ICD2 interface;
� temperature sensor.

4.1.4 PICDEM 4

The PICDEM 4 board (see Figure 4.4), manufactured by Microchip Inc., can be used for

developing 8-, 14- and 18-pin microcontroller based projects. The board contains:

� supporting 8-, 14- and 18-pin DIP devices;
� on-board þ5V regulator for direct input from AC/DC wall adaptor;
� RS-232 port;
� 8 LEDs;
� 2� 16 LCD display;
� 3 push button switches and master reset;
� prototyping area;
� I/O Expander;
� supercapacitor circuitry;
� area for a LIN transceiver;
� area for a motor driver;
� MPLAB ICD 2 connector.

4.1.5 PIC16F887 Development Kit

This kit (see Figure 4.5) is manufactured by Custom Computer Services Inc. The kit includes

an optional C compiler. The main features of this kit are:

Figure 4.4 PICDEM 4 development board. (Reproduced with permission from Microchip Inc)

PIC Microcontroller Development Tools 135

www.it-ebooks.info

http://www.it-ebooks.info/

� PIC16F887 prototyping board (see Figure 4.6);
� 30 I/O pins;
� in-circuit debugger/programmer;
� potentiometer;
� push-button switch;

Figure 4.5 PIC16F887 development kit. (Reproduced with permission from Custom Computer

Services Inc)

Figure 4.6 PIC16F887 prototyping board

136 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� RS232 converter;
� breadboard;
� serial EEPROM;
� real-time clock chip;
� digital temperature chip;
� two-digit 7-segment display;
� power supply.

4.1.6 FUTURLEC PIC18F4550 Development Board

Although this board (see Figure 4.7) has been developed for USB based applications, it can

be used in general microcontroller based project development. The board has the following

features:

� includes PIC18F4550 Microcontroller;
� all necessary power supply components are pre-installed and board is ready-to-run;
� direct In-Circuit Program Download with the PIC Programmer or Microchip ICD2;
� 4 pushbuttons with Speaker;
� 4 variable potentiometers;
� 4 LEDs;
� large Breadboard area;
� USB and RS232 Connection;
� selectable PROG-RUN Switch;
� power and Programming LED;
� In-Circuit Debugging with Microchip ICD2 Unit.

4.1.7 EasyPIC6 Development Board

The EasyPIC6 development board (see Figure 4.8) is a sophisticated development board,

manufactured by mikroElektronika. The board is fully integrated with the compilers

Figure 4.7 FUTURLEC PIC18F4550 development board. (Reproduced with permission from

Futurlec Inc)

PIC Microcontroller Development Tools 137

www.it-ebooks.info

http://www.it-ebooks.info/

developed by the company. Thus, a developed program can very easily be loaded to the pro-

gram memory of the target microcontroller. In addition, the board contains an in-circuit

debugger that can be used during the project development.

The main features of the EasyPIC6 development board are:

� support for over 160 PIC microcontrollers from 8- to 40-pin;
� 2� 16 LCD and 2� 16 COG (Chip-On-Glass) LCD;
� 128� 64 GLCD;
� In-circuit debugger (mikroICD) and programmer;
� 4� 4 keypad;
� USB communication port;
� 36 push-button switches;
� 36 LEDs External or USB power supply;
� digital thermometer;
� on board crystal oscillator;
� reset button;
� menu keypad;

Figure 4.8 EasyPIC6 development board. (Reproduced with permission from mikroElectronika)

138 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� port expander circuit;
� 2 potentiometers for the analogue inputs;
� RS232 and PS/2 ports;
� all port pins available at IDC10 connectors.

4.1.8 EasyPIC7 Development Board

This is the latest development board (see Figure 4.9) from mikroElektronika, offering a large

number of interface devices, and supporting over 250 PIC microcontroller types. The board

is fully compatible and fully integrated with all the PIC microcontroller based compilers

(mikroC Pro for PIC, mikroBASIC Pro for PIC, and mikroPASCAL Pro for PIC) offered by

the company.

The main features of the EasyPIC7 development board are:

� support for over 250 PIC microcontrollers from 8- to 40-pin;
� 2� 16 LCD;
� 128� 64 GLCD with touch panel circuit;
� in-circuit debugger (mikroICD) and programmer;
� buzzer;
� digital (DS1820) and analogue (LM35) Temperature sensors;
� USB communication port;
� 36 push-button switches;
� 36 LEDs EEPROM;
� mikroBUS for connecting external boards;
� external or USB power supply;
� on board crystal oscillator;

Figure 4.9 EasyPIC7 development board

PIC Microcontroller Development Tools 139

www.it-ebooks.info

http://www.it-ebooks.info/

� ICD2/ICD3 connector;
� external and USB dual power supply (5Vand 3.3V);
� reset button;
� 4-digit 7-segment display;
� 2 potentiometers for the analogue inputs;
� tri-state DIP switches;
� RS232;
� all port pins available at IDC10 connectors.

4.2 PIC Microcontroller Display Development Tools

Display development tools are both hardware and software tools used during the develop-

ment of display based projects. In this section we will look at both types of tools briefly. In

the following chapters, the use of these tools will be described in detail, together with actual

physical projects.

4.2.1 Display Hardware Tools

Some of the displays, such as LEDs, 7-segment displays and text based LCDs are simply

connected directly to the I/O ports of microcontrollers. These simple display devices are

driven directly by software written by the user. In this section we are more concerned with

GLCD display devices with integrated microcontrollers. These are in general small handheld

devices incorporating GLCD displays on one side of the PCB, and microcontroller hardware

on the other side of the PCB. The microcontroller is programmed for a specific display task,

and once programmed the devices can be used stand-alone, for example by connecting to a

battery. Some displays incorporate Touch Screen panels and circuits to enable the user to

make selections by touching the screen.

4.2.1.1 SmartGLCD Board

SmartGLCD board (see Figure 4.10) is a small (14� 9 cm) handheld GLCD display devel-

opment board manufactured by mikroElektronika. The board consists of a 240� 128 pixel

monographic graphics display on one side, and as shown in Figure 4.11, a PIC18F8722

microcontroller on the other side. The device includes a RGB backlight and Touch Screen

panel and circuit, and is operated from an 8MHz crystal.

SmartGLCD has the following features:

� PIC18F8722 microcontroller;
� RA6963 display controller;
� Touch Screen controller;
� contrast potentiometer;
� FTDI chip (USB to RS232 converter);
� miniUSB connector;
� mikroSD card slot;
� reset button;
� programming interface.

140 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4.10 SmartGLCD front panel

Figure 4.11 SmartGLCD back panel

PIC Microcontroller Development Tools 141

www.it-ebooks.info

http://www.it-ebooks.info/

The SmartGLCD board can easily be programmed using the VisualGLCD software devel-

oped by mikroElektronika, together with a PIC microcontroller compiler of the company

(e.g. mikroC Pro for PIC). We shall see how to program this board in later chapters.

4.2.1.2 Mikromedia Display Boards

Mikromedia display boards are manufactured by mikroElektronika. These boards are availa-

ble for various types of microcontroller chips. The board for the PIC18 series of microcon-

trollers is known as theMikromedia for PIC18FJ (orMikroMMB). This is a small (8� 6 cm)

full colour handheld TFT type display board with 320� 240 pixels (see Figure 4.12). The

other side of the board contains a PIC18F87J50 microcontroller and additional control and

interface circuitry.

The board (see Figure 4.13) has the following features:

� PIC18F87J50 microcontroller;
� mini USB connector;
� reset button;
� audio module with headphone connector;
� Touch Screen controller;
� accelerometer chip;
� ICD2/ICD3 programming connectors;
� MicroSD card slot;
� Li-Polymer battery connector.

The Mikromedia for PIC18FJ board can easily be programmed using the VisualTFT soft-

ware developed by mikroElektronika, together with a PIC microcontroller compiler of the

Figure 4.12 Mikromedia for PIC18FJ board

142 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

company (e.g. mikroC Pro for PIC). We shall see how to program this board in the next

chapters.

4.2.2 Display Software Tools

Display tools can be divided into three, depending on their complexity:

� font creation tools.
� display library tools.
� visual display tools.

4.2.2.1 Font Creation Tools

Font creation tools are used in both text based and GLCDs. In text based LCDs, users can

create special symbols and characters. For example, mikroC Pro for PIC compiler includes a

font creation tool to create fonts for 5� 7 and 5� 10 pixel text based LCDs. Figure 4.14

Figure 4.13 Component side of the board

PIC Microcontroller Development Tools 143

www.it-ebooks.info

http://www.it-ebooks.info/

shows an example symbol created using the mikroC Pro for PIC compiler. The compiler also

generates the corresponding code that can be used in our program.

4.2.2.2 Display Library Tools

Most compilers offer display libraries where users can call these libraries, for example to

display characters on an LCD, or to display shapes or graphs on GLCDs. We shall see exam-

ples in later chapters on how to use the mikroC Pro for PIC LCD and GLCD libraries. For

example, we can display the text ‘Hello’ on the first row of an LCD with the mikroC Pro for

PIC statement:

Lcd_Out(1, 1, ’Hello’);

4.2.2.3 Visual Display Tools

The visual display tools are complex software packages that help the programmer to create

GLCD based applications. Examples of such tools are the VisualGLCD and the VisualTFT

software. Using these tools, for example, programmers can create real-time games, touch

Figure 4.14 Creating fonts with the mikroC Pro for PIC compiler

144 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

screen applications, and many more advanced real-time graphics applications. We shall see

in later chapters how to use these tools in detail.

4.3 Using the In-Circuit Debugger with the EasyPIC7 Development
Board

We shall be using the EasyPIC7 development board in some of our projects in later chapters.

It is therefore worthwhile to look at an example and see how we can use the in-circuit debug-

ger on this board.

In this example we will count up in binary and send the results to PORT C of the micro-

controller, where we will see the LEDs connected to the port counting up in binary. The

required program code is shown in Figure 4.15. The steps to use the in-circuit debugger are

given below:

� Create a project, as described in Chapter 3 and write the program given in Figure 4.15.

Select the microcontroller type as PIC18F45K22, and the clock frequency as 8MHz.
� Compile the program, making sure that the Build Type is set to ICD Debug and the

Debugger is set to mikroICD in the Project Settings window before the compilation (see

Figure 4.16).

/***
 COUNTING UP IN BINARY

This program counts up in binary and sends the results to PORT C of a PIC18F45K22
type microcontroller.

The easyPIC7 development board is used in this example, and the microcontroller is
operated from a 8MHz crystal

Author: Dogan Ibrahim
Date: October, 2011
***/

void main()
{
unsigned char Cnt = 0;

TRISC = 0; // set direction to be output
for(;;) // Do forever
{
 PORTC=Cnt; // send Cnt to PORT C
 Cnt++; // Increment Cnt
}
}

Figure 4.15 Program for the example

PIC Microcontroller Development Tools 145

www.it-ebooks.info

http://www.it-ebooks.info/

� Connect the EasyPIC7 board to the PC using the USB cable, making sure that the power

supply jumper is set to 5V. You should see the green power LED and the orange Link LED

turning ON.
� Download your program to the program memory of the microcontroller. Click Tools ->
mE Programmer (or press function key F11) from the drop-down menu. During the load-

ing you will see the red Active LED turn ON, and the Blue Data LED will flash to indicate

that the loading is in progress.
� Start the in-circuit debugger by clicking Run -> Start Debugger (or press function key F9).

When the debugging is started, the program line, which will be next executed, is high-

lighted with a blue strip at the left-hand side of the window (see Figure 4.17). On the right-

hand side you will see the debug window.
� Let us single step through the program and monitor the values of variable Cnt. To do this,

select variable Cnt from the list box named Select variable from list. Then, click Add

button in window Watch Values. The variable to be monitored can now be seen, as in

Figure 4.18.
� Press function key F8 to single step through the program. You should see the value of Cnt

incrementing. At the same time, the PORT C LED pattern on the EasyPIC7 development

board will increment in binary every time data is sent to the port. Figure 4.19 shows the

debugging process when Cnt is 4.
� Stop the debugger by clicking Run -> Stop Debugger (or function keys CTRLþ F2).
� The in-circuit debugger supports breakpoints, and the way breakpoints are set and cleared

are the same as when we were using the simulator (see Section 3.7).

Figure 4.16 The Project Settings window

146 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

PIC Microcontroller Development Tools 147

Figure 4.17 Program line to be executed next and the debug window

www.it-ebooks.info

http://www.it-ebooks.info/

148 Using LEDs, LCDs and GLCDs in Microcontroller Projects

Figure 4.19 Debugging when Cnt is 4

Figure 4.18 Monitoring variable Cnt

www.it-ebooks.info

http://www.it-ebooks.info/

It is interesting to note that the new version of the mikroC Pro for PIC compiler (Ver-

sion 5.2) supports advanced breakpoint options, such as placing breakpoints at specified

addresses in the program memory, stopping the code execution when read/write access to

the specified data memory location occurs, event breakpoints, and so on.

4.4 Summary

The microcontroller project development cycle has been explained in this chapter. In addi-

tion, the features of some of the commonly used microcontroller development boards have

been described. Display development tools help the programmers to easily develop display

based applications. These tools are described briefly in this chapter. Some of the projects in

this book are based on using the EasyPIC7 microcontroller development board. An example

use of this board is given where the on-board in-circuit debugger is used to step through a

program loaded into the on-board microcontroller.

Exercises

4.1 Describe the microcontroller project development cycle with the help of a flowchart.

4.2 Explain the main differences between a simulator and a debugger.

4.3 Write a program to flash the LEDs connected to PORT C of a PIC microcontroller with

1 second intervals. Download the program to the EasyPIC7 development board and

start the in-circuit debugger. Set the debugger to watch PORT C. Step through the pro-

gram to see the LEDs flashing on the hardware. At the same time observe the values of

PORT C in the debug window. Then, run the program continuously without the debug-

ger and observe the LEDs flashing.

PIC Microcontroller Development Tools 149

www.it-ebooks.info

http://www.it-ebooks.info/

5

Light Emitting Diodes (LEDs)

A LED is a tiny semiconductor light source, used mainly to indicate the status of electronic

circuits, for example to indicate that power is applied to a circuit. The LED was invented in

1962 by Nick Holonyak while working at the General Electric Company. Early LEDs emit-

ted low-intensity red light, but today high brightness and many colour LEDs are available.

These LEDs are now used to replace incandescent and neon light bulbs in many energy effi-

cient applications, for example LEDs are used as clusters in torches, automotive lights, traffic

lights, signs and indicators, games, and so on. Infrared LEDs are used in most consumer

remote control applications. LEDs offer many advantages over incandescent light sources,

such as lower energy consumption, smaller size, longer lifetime, faster switching, available

in many colours, low-voltage operation, do not get hot, and more robustness.

In this chapter we will review the various LED types used in microcontroller based appli-

cations, and also see how they can be used in electronic circuits. In addition, we will be

looking at the basic principles of other commonly used LED based displays, such as single-

and multi-digit 7-segment LEDs and alphanumeric LEDs.

5.1 A Typical LED

Figure 5.1 shows a typical LED with the electronic circuit symbol similar to that of a semi-

conductor diode. The device has two legs: the longer leg is the anode and the shorter leg the

cathode. The cathode is also identified by a flat side on the body.

The intensity of the light emitted by an LED depends on the amount of forward current

passed through the device. The maximum allowable forward current is denoted by IFmax.

When designing an LED circuit, we have to know the typical voltage drop, VTyp across the

device, and the maximum allowable voltage drop, VFmax.

The brightness of the emitted light is measured in millicandela (mcd) and this is usually

referenced to the forward current. For example, standard red LEDs are quoted to have bright-

ness of 5 mcd when operated at 10mA.

The viewing angle of a standard LED is about 60�, although some LEDs have viewing

angles as narrow as 30�.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

The colour of an LED depends on the type of chemical material used in its construction,

and not on the colour of the glass enclosing the LED. As we shall see later, the colour of an

LED is specified by giving the wavelength of the emitted light.

Most LEDs have typical forward voltage drop of 2V, while blue and white ones can have

as high as 4 V. The typical operating current is around 10mA, although some small low-

current LEDs can operate at around 1mA. The higher the forward current the brighter the

LED becomes, but care should be taken not to exceed the specified maximum allowable

forward current.

Figure 5.2 shows the connection of an LED to a microcontroller output port. The port

output voltage can be assumed to be þ5V when the port is at logic HIGH. Assuming that

the LED is to be operated with 10mA forward current, and that it has a forward voltage drop

of 2V, we can easily calculate the value of the current limiting resistor as

R ¼ 5V� 2V

10 mA
¼ 0:3 K ð5:1Þ

Figure 5.1 A typical LED

Figure 5.2 LED to microcontroller interface

152 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The nearest resistor we can choose is 330V. It is interesting to note that the I/O pin of a

PIC microcontroller can provide up to 25mA current and thus LEDs can be driven with

higher currents if desired, in order to obtain more brightness.

LEDs can easily be connected in series in circuits. When calculating the required current

limiting resistor in such applications, the total voltage drop across all the LEDs should be

taken as the overall forward voltage drop. LEDs can also be connected in parallel. When the

same types of LEDs are connected in parallel, the value of the current limiting resistor is

calculated by doubling the forward current requirements (e.g. 20mA) and keeping the same

forward voltage drop (e.g. 2V). When different LEDs are connected in parallel, the situation

is more complex, as only the LED with the lowest voltage drop will light and the high cur-

rent through this LED may destroy it. It is best to use separate current limiting resistors in

such applications.

5.2 LED Colours

Early LEDs were available only in low intensity red colour. Today, with the use of different

inorganic semiconductor materials, visible LEDs are available in red, orange, yellow, blue,

green, violet, purple and white. In addition, non-visible infrared and ultraviolet LEDs are

also available for specific applications.

Table 5.1 gives a list of the available LEDs with their emitted wavelengths, typical for-

ward voltage drops and the typical materials used in their construction.

The white LED is constructed either by using three primary colour LEDs, red, green and

blue and mixing them to obtain white light (called RGB based white LEDs); or alternatively,

by converting the monochromatic blue light into white by using a phosphor material (called

phosphor based white LEDs).

The technical specifications of some LED types are given in Table 5.2. The LED selection

for an applications depends on the following factors:

� size;
� shape;
� colour of emitted light (wavelength);
� colour of the case;
� brightness of the light;
� viewing angle.

Table 5.1 LED colours

Colour Typical Voltage Drop Wavelength Typical Material

Red 2.0V 610–760 nm GaAsP

Orange 2.0V 590–610 nm AlGaInP

Yellow 2.1V 570–590 nm GaAsP

Green 3.0V 500–570 nm InGaN

Blue 3.0V 450–500 nm ZnSe

Violet 3.0V 400–450 nm InGaN

White 3.5V Broad Blueþ phosphor

Light Emitting Diodes (LEDs) 153

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 LED Sizes

The two most common LED sizes are known as T-1 and T-1 3/4. T-1 is small 3mm diameter

device, while T-1 3/4 is standard 5mm diameter device. LEDs are also available in tiny SMD

format, mounted on PCBs, and as right-angle devices for mounting on a PCB. Special brack-

ets are available for mounting on panels or as boxes.

5.4 Bi-Colour LEDs

A bi-colour LED can be in two different forms: 2-pin and 3-pin. In a 2-pin LED, two differ-

ent colour LEDs are combined in one package and wired in ‘inverse parallel’, that is one

forwards, one backwards (see Figure 5.3). As shown in the truth table, only one LED is ON

at any time, depending on the voltage applied to the pins.

In a 3-pin bi-colour LED, two different colour LEDs are usually connected in inverse, as

shown in Figure 5.4. The common cathode pin is normally connected to the ground. Only

one or both LEDs can be turned ON by supplying voltages to the anodes, as shown in the

truth table.

Table 5.2 Some LED specifications

Type Colour IFmax VFmax Intensity Wavelength

Standard Red 30mA 2.1V 5mcd@10mA 660 nm

Standard Bright red 30mA 2.5V 80cmd@10mA 625 nm

Super bright Red 30mA 2.5V 500cmd@20mA 660 nm

Standard Green 25mA 2.5V 35cmd@10mA 565 nm

Bright Blue 30mA 5.5V 60cmd @20mA 430 nm

Figure 5.3 Bi-colour 2-lead LED

Figure 5.4 Bi-colour 3-lead LED

154 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

5.5 Tri-Colour LEDs

These LEDs have 4 leads with 3 LEDs combined in one package, with common cathode or

common anode configurations. Any number of LEDs can be turned ON by applying voltages

to the pins. Figure 5.5 shows an example tri-colour LED with common cathode.

5.6 Flashing LEDs

A flashing LED is a single LED with 2 leads that flashes at a constant rate when a voltage is

connected to its terminals. All the flashing circuitry and the current limiting resistor are

included inside the LED assembly and the LED can be directly connected to a power supply.

The flashing rate varies between different manufacturers, for example a typical flashing LED

operates with 3.5 to 14Vand flashes approximately twice a second.

5.7 Other LED Shapes

LEDs are also available in different shapes and sizes. Figure 5.6 shows an LED assembly in

the form of a bar, housed in a DIL package, and is available in different colours.

Figure 5.7 shows an LED dot-matrix assembly consisting of 5 rows and 7 columns of

LEDs arranged as dots, and housed in a 14-pin DIL package. This type of dot-matrix LEDs

is available in various colours, sizes and shapes. Several such LED assemblies can be con-

nected to each other and a microcontroller is commonly used to display characters or sym-

bols on the LED assembly.

Figure 5.5 Tri-colour LED

Figure 5.6 LED bar

Light Emitting Diodes (LEDs) 155

www.it-ebooks.info

http://www.it-ebooks.info/

LED dot-matrix displays are also used as large fixed or moving displays, usually in adver-

tisements, or as signs. An example large display is shown in Figure 5.8.

5.8 7-Segment LEDs

7-segment displays were the earliest LED type electronic displays used to display numbers.

These devices are commonly used in digital clocks and watches, electronic meters, elec-

tronic counting devices, and other equipment for displaying numeric only data.

A 7-segment LED consists of 7 light emitting elements arranged in a rectangular enclo-

sure, and by turning the appropriate segments ON and OFF we can obtain the numbers 0

to 9. Figure 5.9 shows a typical 1-digit 7-segment display. Optionally, a decimal point is

available to display fractional non-integer numbers. The segments of the displays are

referred to by letters ‘a’ to ‘g’.

7-segment displays are available in two configurations: common anode and common cath-

ode. As shown in Figure 5.10, in a common anode connection, the anode pins of all the

segments are connected together and this pin is usually connected to the power supply.

Individual segments are turned ON by grounding the required segment pin. Similarly,

Figure 5.7 LED dot-matrix assembly

Figure 5.8 Large LED dot-matrix display

Figure 5.9 Typical 7-segment display

156 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5.11 shows a common cathode display. Here, the cathodes of all the segments are

connected together and this pin is usually connected to ground. Individual segments are

turned ON by applying voltage to the required segment pin.

5.8.1 Displaying Numbers

Figure 5.12 shows the connection between a microcontroller and a 7-segment display. As

with standard LEDs, it is required to use current limiting resistors in each segment of the

display to limit the current. Usually, resistor packages are used for ease of construction,

lower cost and to save space. These packages consist of 8 or 10 same value resistors in a SIL

Figure 5.10 Common anode 7-segment LED

Figure 5.11 Common cathode 7-segment LED

Figure 5.12 Connecting a 7-segment display to a microcontroller

Light Emitting Diodes (LEDs) 157

www.it-ebooks.info

http://www.it-ebooks.info/

(Single-In-Line) type package with a common pin that can be grounded or connected to þV,

depending on whether a common cathode or common anode display is used, respectively.

Figure 5.13 shows how the numbers 0 to 9 can be displayed by a 7-segment display.

Notice that some symbols and lowercase letters (e.g. ‘b’, ‘c’, ‘d’, ‘o’, etc.) can also be dis-

played. In the early days of LEDs, 7-segment displays were used to display hexadecimal

numbers from ‘0’ to ‘9’ and ‘a’ to ‘f’.

The easiest way to display a number on the 7-segment LED is first to create a table show-

ing the numbers and corresponding segments that should be turned ON or OFF to display the

required number. Then, the bit pattern (or hexadecimal equivalent) required to display a

number can be determined and the required number can be displayed by sending this bit

pattern to the device. Table 5.3 shows the 7-segment LED encoding where numbers, the

corresponding segment status, and the hexadecimal numbers required to be sent to the port

where the display is connected to in order to display a specific number, are given. In con-

structing this table, it is assumed that the 8th bit of the microcontroller is 0, as it is not used

by the display. For example, to display number 5, we have to send the hexadecimal number

0� 6D to the port that the display is connected to.

Figure 5.13 Displaying numbers 0 to 9

Table 5.3 7-segment LED encoding

Number x g f e d c b a Hexadecimal

0 0 0 1 1 1 1 1 1 3F

1 0 0 0 0 0 1 1 0 06

2 0 1 0 1 1 0 1 1 5B

3 0 1 0 0 1 1 1 1 4F

4 0 1 1 0 0 1 1 0 66

5 0 1 1 0 1 1 0 1 6D

6 0 1 1 1 1 1 0 1 7D

7 0 0 0 0 0 1 1 1 07

8 0 1 1 1 1 1 1 1 7F

9 0 1 1 0 1 1 1 1 6F

158 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

5.8.2 Multi-digit 7-Segment Displays

A 1-digit 7-segment display can only show numbers 0 to 9. In many applications, segments

are joined together to create larger displays. A 2-digit display can show numbers between 0

and 99, a 3-digit between 0 and 999, a 4-digit between 0 and 9999, and so on.

Figure 5.14 shows a typical 2-digit 7-segment display. The digits are normally multiplexed

to save I/O pins. For example, without multiplexing, a 2-digit display will require 14 pins, a

3-digit display will require 21 pins, and so on. With multiplexing, a 2-digit display will

require only 9 pins, a 3-digit display will require 10 pins, and so on. Another advantage of

multiplexing 7-segment LEDs is to reduce the power consumption considerably.

In multiplexed applications, all the digit segments are driven in parallel at the same time,

but only the common pin (e.g. anode or cathode) of the required digit is enabled. The digits

are enabled and disabled so fast that it gives the impression to the eye that both displays are

ON at the same time. For example, suppose that we wish to display the number ‘25’ on a

2-digit common cathode display. The steps are given below:

1. Send data to display ‘2’ on both digits.

2. Enable the left (MSD) digit by grounding its cathode pin.

3. Wait for a while.

4. Send data to display ‘5’ on both digits.

5. Enable the right (LSD) digit by grounding its cathode pin.

6. Wait for a while.

7. Go back to step 1.

The common pins of each digit are usually controlled using transistors switches. Figure 5.15

shows how a 2-digit display can be connected to a microcontroller using npn transistors to

control the segment lines. Notice that setting the base of a transistor to logic HIGH will turn

the transistor ON and hence will enable the common cathode pin connected to it.

5.9 Alphanumeric LEDs

Alphanumeric LED displays are used to display numerical as well as character data. These

displays are similar to 7-segment LEDs, but are usually made up of 14-segments (plus a

decimal point). Figure 5.16 shows a typical alphanumeric LED display. The segments are

labelled ‘a’ to‘m’. As with the 7-segment displays, numbers and letters are displayed by turn-

ing the appropriate segments ON and OFF. The internal structure of a typical 14-segment

common anode alphanumeric display is shown in Figure 5.17.

Figure 5.14 A 2-digit 7-segment display

Light Emitting Diodes (LEDs) 159

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5.16 A typical 14-segment alphanumeric LED display

Figure 5.15 Connecting a 2-digit display to a microcontroller

Figure 5.17 Inside a 14-segment common anode alphanumeric LED display

160 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5.18 shows how the numbers, letters and various symbols can be displayed on 14-

digit alphanumeric LED displays. Alphanumeric LEDs are connected to microcontrollers in

the same as the way 7-segment displays are connected.

Figure 5.18 Displaying numbers, letters and symbols on alphanumeric displays

Light Emitting Diodes (LEDs) 161

www.it-ebooks.info

http://www.it-ebooks.info/

A table similar to Table 5.3 can be constructed to determine how to display various char-

acters. Table 5.4 shows what hexadecimal code to send to the port where the display is con-

nected to, in order to display numbers ‘0’ to ‘9’ and letters ‘A’ to ‘Z’, assuming that the

display is connected to a microcontroller using 14 I/O pins (this will normally be done using

an 8-bit I/O port and another 6-bit I/O port), and bit 0 of the port is connected to segment ‘a’

of the display. For example, the letter ‘A’ is displayed by sending the hexadecimal code

0�04F7 to the display port.

Table 5.4 14-segment alphanumeric LED decoding

Number of Letter m l k j I h g2 g1 f e d c b a Hexadecimal

0 1 0 0 1 0 0 0 0 11 1 1 1 1 243F

1 00 0 0 0 0 0 0 00 0 0 1 1 0003

2 00 0 0 0 0 11 01 1 0 1 1 00DB

3 00 0 0 0 0 1 0 00 1 1 1 1 008F

4 00 0 0 0 0 11 1 0 0 1 1 0 00E6

5 00 1 0 0 0 0 1 10 1 0 0 1 0869

6 00 0 0 0 0 11 1 1 1 1 0 1 00FD

7 00 0 0 0 0 0 0 00 0 1 1 1 0007

8 00 0 0 0 0 11 1 1 1 1 1 1 00FF

9 00 0 0 0 0 11 10 1 1 1 1 00EF

A 0 0 0 1 0 0 11 11 0 1 1 1 04F7

B 01 0 01 0 1 0 00 1 1 1 1 128F

C 00 0 0 0 0 0 0 11 1 0 0 1 0039

D 0 1 0 0 1 0 0 0 0 0 1 1 1 1 120F

E 0 0 0 0 0 0 11 11 1 0 0 1 00F9

F 0 0 0 0 0 0 0 1 11 0 0 0 1 0071

G 0 0 0 0 0 0 1 0 11 1 1 0 1 00BD

H 0 0 0 0 0 0 11 11 0 1 1 0 00F6

I 0 1 0 01 0 0 0 0 0 0 0 0 0 1200

J 0 0 0 0 0 0 0 0 0 1 1 1 1 0 001E

K 0 0 1 1 0 0 0 1 11 0 0 0 0 0C70

L 0 0 0 0 0 0 0 0 11 1 0 0 0 0038

M 0 0 0 1 0 1 0 0 11 0 1 1 0 0536

N 0 0 1 0 0 1 0 0 11 0 1 1 0 0936

O 0 0 0 0 0 0 0 0 11 1 1 1 1 003F

P 0 0 0 0 0 0 11 11 0 0 1 1 00F3

Q 0 0 1 0 0 0 0 0 11 1 1 1 1 083F

R 0 0 1 0 0 0 11 11 0 0 1 1 08F3

S 0 0 0 0 0 0 11 10 1 1 0 1 0ED

T 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1201

U 0 0 0 0 0 0 0 0 11 1 1 1 0 003E

V 10 0 1 0 0 0 0 11 0 0 0 0 2430

W 10 1 0 0 0 0 0 11 0 1 1 0 2436

X 10 1 1 0 1 0 0 0 0 0 0 0 0 2D00

Y 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1500

Z 10 0 1 0 0 0 0 0 0 1 0 0 1 2409

162 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Alphanumeric LED displays are usually multiplexed to display multi-digit numbers and

texts. Multiplexing reduces the I/O pin requirements, overall power consumption and the

number of connections considerably. The operating principles of multiplexed alphanumeric

displays are the same as the standard multiplexed 7-segment displays.

Some companies offer multiplexed alphanumeric displays with integrated controllers, all

housed on a small PCB and controlled with only a few serial lines. This simplifies the devel-

opment of alphanumeric LED based projects considerably.

5.10 mikroC Pro for PIC 7-Segment LED Editor

The mikroC Pro for PIC language includes a 7-segment LED editor that can be used to find

the decimal or hexadecimal codes to be sent to a port to display a given pattern. Patterns are

created by clicking on the LED segments. The editor is invoked from the drop-down menu

by clicking Tools -> Seven Segment Editor. Figure 5.19 shows a typical display of the editor

where the pattern for number ‘5’ is created. The code for this pattern is displayed as 0�6D

for common cathode displays (same code as in Table 5.3). Code for both common anode and

common cathode displays can easily be obtained.

5.11 Summary

This chapter has described the basic principles of LED displays and showed how they can be

used in microcontroller based projects.

The use of 7-segment LED displays has been described in detail, including the multi-

plexed multi-digit displays. The 7-segment encoding table is given that will enable the user

to display any number by simply sending the correct code to the port where the display is

connected to. The operation of dot-matrix LED displays have been explained briefly.

The chapter has also described the widely used LED alphanumeric displays, used to dis-

play numbers 0 to 9, letters A to Z, and some common symbols. The encoding table of

Figure 5.19 mikroC Pro for PIC 7-segment LED editor

Light Emitting Diodes (LEDs) 163

www.it-ebooks.info

http://www.it-ebooks.info/

alphanumeric displays is given to enable the user to display any required number or letter by

reading from the table and sending the correct code to the display port.

Exercises

5.1 Explain the differences between different colour LEDs.

5.2 What are the important parameters of LED displays?

5.3 Explain what the LED ‘viewing angle’ is, and why is it important?

5.4 Draw a circuit diagram to show how an LED can be used in a microcontroller based

project. Why is there need for a current limiting resistor? How can you calculate the

value of this resistor?

5.5 What are the advantages of bi-colour and tri-colour LEDs? Give one example use for

each LED type.

5.6 Draw a circuit diagram to show how a 7-segment LED display can be connected to a

microcontroller.

5.7 Explain how number ‘8’ can be displayed on a 7-segment display.

5.8 Use the mikroC Pro for PIC 7-segment editor to create the pattern for number ‘0’.

What is the hexadecimal code for this pattern in both common anode and common

cathode configurations?

5.9 Explain how 7-segment LED displays can be multiplexed. Draw the circuit diagram to

show a 4-digit multiplexed display. Explain how the number ‘2364’ can be displayed

with such a display.

5.10 Explain the differences between 7-segment and alphanumeric LED displays.

5.11 Draw the circuit diagram to show how an alphanumeric display can be connected to a

microcontroller. Explain how you would display letter ‘Z’ on such a display.

5.12 Explain how alphanumeric LED displays can be multiplexed. Draw the circuit dia-

gram to show how a 2-digit alphanumeric display can be constructed. Explain how

the letters ‘XY’ can be displayed with such a display.

164 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

6

Liquid Crystal Displays (LCDs)
and mikroC Pro for PIC LCD
Functions

Displays are an important part of most microcontroller based applications. A video display

for example, would make a microcontroller application much more user-friendly, as it allows

text messages and images to be displayed in real-time. Standard video displays require com-

plex interfaces and are large and costly. The alternatives to video displays are the LCDs (and

graphics LCDs). These devices come in different shapes and sizes. Some LCDs have only

one row, while others can have up to four rows. Some have back lighting so that the display

can be viewed in dimly lit conditions.

There are basically two types of LCDs as far as the interfacing method is concerned: par-

allel LCDs and serial LCDs. Parallel LCDs (e.g. Hitachi HD44780) are the most commonly

used ones and they are connected to microcontrollers using four to eight data lines and some

control lines. Serial LCDs are connected to microcontrollers using only one data line and

data is sent to the LCD using the RS232 serial communications protocol. Serial LCDs are

easier to use, but they cost a lot more than the parallel ones.

In this book we are interested in the parallel LCDs only, as they are the ones used

commonly in display applications. In this chapter we shall be looking at the basic operating

principles of these LCDs and see how they can be used and programmed in microcontroller

based applications. In addition, we shall be looking at the mikroC Pro for PIC LCD library

functions, which simplify the development of LCD based applications considerably.

6.1 HD44780 Controller

HD44780 is perhaps the most popular LCD controller module used in microcontroller proj-

ects and it is currently the industry standard LCD module. This module is monochrome and

comes in different shapes and sizes. Depending upon the requirements, displays with 8, 16,

20, 24, 32 and 40 characters are available. The row size can be selected as 1, 2 or 4. Display

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

types are identified by specifying the number of rows and number of characters per row. For

example, a 1� 16 display (see Figure 6.1) has one row with 16 characters, and a 4� 16

display has 4 rows and 16 characters on each row (see Figure 6.2).

The LCD normally has 14 pins for connection to the outside world. The pins are usually

organised in a single row and numbered 1 to 14, as shown in Figure 6.3. Those with back-

lights have two additional pins. Table 6.1 shows the pin configuration. The device is nor-

mally operated from a voltage þ3.3 to þ5V.

Vss is the ground pin. The Vdd pin should be connected to a positive supply. Although the

manufacturers specify a þ5V supply, the device will work with as low as þ3Vor as high as

þ6V.

Pin 3 is named the Vee and this is the contrast adjustment pin. This pin is used to adjust the

contrast of the display and it should be connected to a variable voltage supply. A 10K poten-

tiometer is normally connected between the power supply lines with its wiper arm connected

to this pin so that the contrast can be adjusted as desired. Figure 6.4 shows a typical connec-

tion of this pin.

Pin 4 is the Register Select (RS) and when this pin is LOW, any data sent to the display is

treated as commands. When RS is HIGH, data sent is treated as character data for the

display.

Pin 5 is the Read/write (R/W) line. This pin is pulled LOW in order to write commands or

character data to the display (i.e. microcontroller to display data transfer). When this pin is

HIGH, character data or status information can be read from the display module (i.e. display

to microcontroller data transfer). The R/W pin is usually connected to ground, as we nor-

mally want to send commands and data to the display.

Pin 6 is the Enable (E) or clock pin used to initiate the transfer of command or data to the

display. When writing to the display, data is transferred on the HIGH to LOW transition of

Figure 6.1 1� 16 LCD display

Figure 6.2 4� 16 LCD display

Figure 6.3 LCD pins

166 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

this pin. Similarly, when reading from the display, data becomes available after the LOW to

HIGH transition of this pin.

Pins 7 to 14 are the eight data bus lines (D0 to D7). As we shall see later, data transfer

between the microcontroller and the LCD can take place using either 8-bit byte, or two 4-bit

nibbles. In the latter case, only the upper 4 bits of the data bus pins (D4 to D7) are used and a

byte is transferred in two successive operations. The advantage of using 4-bit mode is that

fewer I/O lines are required to communicate with the LCD.

The LCD can display all of the standard ASCII characters. In addition, some symbols can

also be displayed. Characters are made up of either 5� 7 or 5� 10 dots. Figure 6.5 shows

Table 6.1 LCD pin configuration

Pin no Name Function

1 Vss Ground

2 Vdd þV supply

3 Vee Contrast adjustment

4 RS Register select

5 R/W Read/write

6 E Enable (clock)

7 D0 Data bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

15 (optional) Bþ Backlight þ
16 (optional) B� Backlight �

Figure 6.4 Adjusting the display contrast

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 167

www.it-ebooks.info

http://www.it-ebooks.info/

the standard LCD character set, although different manufacturers can specify different

character sets.

6.2 Displaying User Defined Data

Figure 6.6 shows the block diagram of the HD44780 LCD module. The module contains

three types of memories: an 80� 8 bits display data RAM (DDRAM), 64 bytes of character

generator RAM (CGRAM), and a 9920 bit character generator ROM (CGROM). The data

displayed currently by the LCD is stored in the DDRAM. On displays with fewer than

80 characters, any unused DDRAM locations can be used as a general purpose RAM. The

CGRAM stores the user defined character set. The CGROM stores the fixed character set of

the LCD, which can vary between different manufacturers. The device has two registers, an

instruction register (IR) and a data register (DR). The IR can be written from the microcon-

troller and it stores the instruction codes and address information. The DR stores the data to

be written into the DDRAM or the CGRAM. Data written into the DR is automatically trans-

ferred to the DDRAM or the CGRAM. An address counter is used to address the DDRAM

and CGRAM. This counter is incremented or decremented automatically after writing (or

reading) into the DDRAM or the CGRAM.

The user can specify any pattern of up to 8 characters made up of a 5� 7 matrix, or up to

4 characters with a 5� 10 matrix. Figure 6.7 shows the relationship between the character

codes, CGRAM address and the CGRAM data for 5� 7 display matrix. CGRAM address

bits 3 to 5 (000 to 111) correspond to 8 characters. CGRAM address bits 0 to 2 (000 to 111)

correspond to the line numbers of the characters. CGRAM data bits 0 to 4 correspond to the

column data of the pattern to be generated. The user defined CGRAM characters are dis-

played when character code bits 4 to 7 are all 0. In the example in Figure 6.7, the user defined

character ‘R’ will be displayed when character code 0� 00 is selected (notice that since bit 3

of the character code is don’t care, the character can also be displayed by selecting code

0� 08).

Figure 6.5 LCD standard character set

168 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The CGRAM data for character ‘R’ in Figure 6.7 is given below. This data can be loaded

into the CGRAM using the LCD instruction Set CGRAM Address and Write Data to

CGRAM (see Sections 6.4.7 and 6.4.10):

0x1E, 0x11, 0x11, 0x1E, 0x14, 0x12, 0x11,0x0

6.3 DDRAM Addresses

The DDRAM addresses of various display sizes are given in this section. Table 6.2 gives the

1-row display DDRAM addresses.

Figure 6.6 Block diagram of the HD44780 module

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 169

www.it-ebooks.info

http://www.it-ebooks.info/

The 2-row display DDRAM addresses are given in Table 6.3. Notice that the second row

starts from address 0� 40.

The 4-row display DDRAM addresses are given in Table 6.4. As can be seen from this

table, the second row starts from address 0� 40, the third row starts from address 0� 14,

and the fourth row starts from address 0� 54. Two internal controllers are used for 4-row

displays.

Figure 6.7 Relationship between character codes, CGRAM addresses and CGRAM data

Table 6.2 1-row display DDRAM addresses

Display Size Character Position DDRAM Address

1� 8 00 to 07 0� 00 to 0� 07

1� 16 00 to 15 0� 00 to 0� 0F

1� 20 00 to 19 0� 00 to 0� 13

1� 24 00 to 23 0� 00 to 0� 17

1� 32 00 to 31 0� 00 to 0� 1F

1� 40 00 to 39 0� 00 to 0� 27

170 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Display Timing and Control

Although the mikroC Pro for PIC compiler includes a library of functions for using LCD

displays, it is worthwhile to learn the basic principles of how the LCD operates.

Correct operation of the LCD display requires knowledge of the instruction set and correct

timing. Figure 6.8 shows LCD the instruction set. The instructions are described in the next

sections.

Table 6.3 2-row display DDRAM addresses

Display Size Character Position DDRAM Address

2� 16 00 to 15 0� 00 to 0� 0F and 0� 40 to 0� 4F

2� 20 00 to 19 0� 00 to 0� 13 and 0� 40 to 0� 53

2� 24 00 to 23 0� 00 to 0� 17 and 0� 40 to 0� 57

2� 32 00 to 31 0� 00 to 0� 1F and 0� 40 to 0� 5F

2� 40 00 to 39 0� 00 to 0� 27 and 0� 40 to 0� 67

Table 6.4 4-row display DDRAM addresses

Display

Size

Character

Position DDRAM Address

4� 16 00 to 15 0� 00 to 0� 0F and 0� 40 to 0� 4F and 0� 14 to 0� 23 and 0� 54 to

0� 63

4� 20 00 to 19 0� 00 to 0� 13 and 0� 40 to 0� 53 and 0� 14 to 0� 27 and 0� 54 to 0� 67

4� 40 00 to 39 0� 00 to 0� 27 and 0� 40 to 0� 67 on both controllers

Instruction RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Time
Clear Display 0 0 0 0 0 0 0 0 0 1 1.64ms
Return Home 0 0 0 0 0 0 0 0 1 * 1.64ms
Entry Mode
set

0 0 0 0 0 0 0 1 I/D S 40µs

Display
ON/OFF

0 0 0 0 0 0 1 D C B 40µs

Cursor/Display
shift Function
set

0 0 0 0 0 1 S/C R/L * * 40µs

Function Set 0 0 0 0 1 DL N F * * 40µs
Set CGRAM 0 0 0 1 A A A A A A 40µs
Set DDRAM 0 0 1 A A A A A A A 40µs
Read Busy
Flag

0 1 BF A A A A A A A 0

Write to
CGRAM or
DDRAM

1 0 D D D D D D D D 40µs

Read from
CGRAM or
DDRAM

1 1 D D D D D D D D 40µs

Figure 6.8 HD44780 instruction set

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 171

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.1 Clear Display

This instruction clears the display and returns the cursor to the home position. ASCII ‘Space’

codes (hexadecimal 0� 20) are filled in all DDRAM addresses and the address counter is

reset to 0. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 0 0 0 1

6.4.2 Return Cursor to Home

This instruction returns the cursor to the home position, which is the top left corner of the

display. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 0 0 1 �

6.4.3 Cursor Move Direction

This instruction sets the cursor move direction and specifies whether or not to shift the dis-

play. These operations are performed during data read and write. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 0 1 I/D S

The DDRAM address is incremented (I/D¼ 1) or decremented (I/D¼ 0) by 1 when a

character code is written into or read from the DDRAM. In normal operations, I/D is set to 1

to increment the cursor and move it to the right after writing a character.

Bit S shifts the entire display to the right (when I/D¼ 0) or left (when I/D¼ 1) when set to 1.

6.4.4 Display ON/OFF

This instruction sets the display ON or OFF. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 1 D C B

The display is ON when D¼ 1, and OFF when D¼ 0.

The cursor displays when C¼ 1, and does not display when C¼ 0.

When B¼ 1, the character indicated by the cursor blinks.

172 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.5 Cursor and Display Shift

This instruction moves the cursor and shifts the display without changing the DDRAM con-

tents. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 1 S/C R/L � �

In a 2-row display, the cursor moves to the second line when it passes the end of the first

row. S/C and R/L control the shift operations as follows:

S/C R/L

0 0 Shift cursor to the left

0 1 Shift cursor to the right

1 0 Shift the entire display to the left

1 1 Shift the entire display to the right

6.4.6 Function Set

This instruction sets the interface data length (DL), number of display rows (N), and the

character font (F). The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 1 D/L N F � �

When DL¼ 1, the DL is set to 8 bits; when DL¼ 0, the DL is set to 4-bits.

N sets the number of display lines (1 or 2)

F sets the character font; F¼ 0 for 5� 7 font, and F¼ 1 for 5� 10 font.

6.4.7 Set CGRAM Address

This instruction sets the CGRAM address. CGRAM data is sent and received after this set-

ting. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 1 A A A A A A

After this instruction the address counter is loaded with address AAAAAA. Data is then

written to or read from the microcontroller for the CGRAM.

6.4.8 Set DDRAM Address

This instruction sets the DDRAM address. DDRAM data is sent and received after this set-

ting. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 A A A A A A A

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 173

www.it-ebooks.info

http://www.it-ebooks.info/

After this instruction, the address counter is loaded with address AAAAAAA. Data is then

written to or read from the microcontroller for the DDRAM.

Notice that for 1-line displays, AAAAAAA is from 00 to 0� 4F. For 2-line displays,

AAAAAAA is from 00 to 0� 27 for the first line, and from 0� 40 to 0� 67 for the

second line.

6.4.9 Read Busy Flag

This instruction reads the busy flag (BF), which indicates whether or not the LCD module is

ready to receive commands or character data. The instruction format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 1 BF A A A A A A A

BF¼ 1 indicates that internal operation is in progress and the LCD module cannot receive

new commands or character data. The instruction also returns value of the address counter in

AAAAAAA.

6.4.10 Write Data to CGRAM or DDRAM

This instruction writes data into DDRAM or CGRAM. The 8-bit data DDDDDDDD is

written to the CGRAM or the DDRAM. The memory to be written is determined by

the previous specifications of CGRAM or DDRAM address setting. The instruction

format is:

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1 0 D D D D D D D D

6.4.11 Read Data from CGRAM or DDRAM

This instruction is used to read data from the CGRAM or the DDRAM. The previous specifi-

cation of CGRAM or DDRAM determines whether the CGRAM or the DDRAM is to be

read.

6.5 LCD Initialisation

The LCD controller has to be initialised before it can be used. The initialisation

sequence is different when the LCD is operated in 4-bit or 8-bit mode. Although the 4-

bit mode is more commonly used, we will look at the initialisation of the LCD when

operated in both modes.

174 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

6.5.1 8-bit Mode Initialisation

The steps to initialise the LCD in 8-bit mode are as follows:

1. Wait at least 15ms after power is applied.

2. Write 0� 030 to LCD and wait 5ms for the instruction to complete.

3. Write 0� 030 to LCD and wait 160 ms for the instruction to complete.

4. Write 0� 030 to LCD and wait 160 ms for the instruction to complete.

5. Set the operating characteristics of the LCD:
� set interface length (8-bit);
� turn off display;
� turn on display;
� set entry mode.

6.5.2 4-bit Mode Initialisation

The steps to initialise the LCD in 4-bit mode are

1. Wait at least 15ms after power is applied.

2. Write 0� 03 to LCD and wait 5ms for the instruction to complete.

3. Write 0� 03 to LCD and wait 160 ms for the instruction to complete.

4. Write 0� 030 to LCD and wait 160 ms for the instruction to complete.

5. Set the operating characteristics of the LCD:
� Write 0� 02 to set 4-bit mode.

Following instructions/data writes must be in two nibbles
� Set interface length and font.
� Turn off display.
� Turn on display and enable blink cursor.
� Set entry mode.

In most LCD based projects, the 4-bit mode is used. Considering only the 4-bit mode of

operation with 5� 7 character matrix, 2-lines, and cursor blink ON, the initialisation

sequence can be described in detail as follows (notice that the data is sent in the upper byte

only, i.e. DB4 to DB7):

1. Wait at least 15ms after power is applied.

2. Set RS¼ 0, R/W¼ 0.

3. Send 0� 03 to LCD.

RS R/W DB7 DB6 DB5 DB4

0 0 0 0 1 1

4. Set E¼ 1, followed by E¼ 0.

5. Wait 5ms.

6. Send 0� 03 to LCD.

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 175

www.it-ebooks.info

http://www.it-ebooks.info/

7. Set E¼ 1, followed by E¼ 0.

8. Wait 160ms.
9. Send 0� 03 to LCD.

10. Set E¼ 1, followed by E¼ 0.

11. Wait for 160 ms.
12. Send 0� 02 to LCD to set 4-bit mode.

RS R/W DB7 DB6 DB5 DB4

0 0 0 0 1 0

13. Send E¼ 1, followed by E¼ 0.

14. Wait 40 ms.
15. Send 0� 02 to LCD (for 4-bit mode, 5� 8 font).

16. Set E¼ 1, followed by E¼ 0.

17. Send 0� 08 to LCD.

RS R/W DB7 DB6 DB5 DB4

0 0 1 0 0 0

18. Set E¼ 1, followed by E¼ 0.

19. Wait 40 ms.
20. Send 0� 00 to LCD (display OFF).

21. Set E¼ 1, followed by E¼ 0.

22. Send 0� 08 to LCD.

23. Set E¼ 1, followed by E¼ 0.

24. Wait 40 ms.
25. Send 0� 00 to LCD (display ON, blink ON).

26. Set E¼ 1, followed by E¼ 0.

27. Send 0� 0F to LCD.

28. Set E¼ 1, followed by E¼ 0.

29. Wait 40 ms.
30. Send 0� 00 to LCD (set entry mode).

31. Set E¼ 1, followed by E¼ 0.

32. Send 0� 06 to LCD.

RS R/W DB7 DB6 DB5 DB4

0 0 0 1 1 0

33. Set E¼ 1, followed by E¼ 0.

34. Wait 40 ms.
35. Set RS¼ 1.

36. End of initialisation.

In steps 15 to 18, the byte 0� 28 is sent in two nibbles to the display. That is, D/L¼ 0,

N¼ 1 and F¼ 0, which sets the interface to 4-bit mode, 2-lines, and 5� 7 font.

176 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 1 D/L N F � �

In steps 20 to 23, the byte 0� 08 is sent in two nibbles to turn OFF the display. That is,

D¼ 0, C¼ 0 and B¼ 0, which sets display OFF, cursor OFF, and blink OFF.

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 1 D C B

In steps 25 to 28, the byte 0� 0F is sent in two nibbles to turn the display ON. That is,

D¼ 1, C¼ 1 and B¼ 1, which turns the display ON, turns the cursor ON, and turns ON the

cursor blink.

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 1 D C F � �

In steps 30 to 33, the byte 0� 06 is sent in two nibbles to set the entry mode. That is, I/

D¼ 1 and S¼ 0, which is set to increment the cursor after each byte is written to the display,

and display shift is disabled.

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 0 1 I/D S

The minimum pulse width of the ‘E’ clock line is specified as 450 ns by the manufacturers.

6.6 Example LCD Display Setup Program

An example C program is given here to show how the LCD can be set up. The connection of

the LCD to the microcontroller is shown in Figure 6.9 (if you are using the EasyPIC 7 devel-

opment board, all you have to do is just connect the LCD to the board). PORT B lower pins

Figure 6.9 Connecting the LCD to a PIC microcontroller

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 177

www.it-ebooks.info

http://www.it-ebooks.info/

(RB0 to RB3) are connected to the upper 4 bits of the LCD (DB4 to DB7). In addition, RB4

and RB5 pins are connected to LCD RS and E pins, respectively.

The program listing is shown in Figure 6.10. The following functions are used in the

program:

/***
LCD DISPLAY ROUTINES

This program implements LCD routines. The LCD is connected to a PIC microcontroller
as follows:

LCD Pin Microcontroller
DB4 RB0
DB5 RB1
DB6 RB2
DB7 RB3
RS RB4
E RB5

The easyPIC7 development board is used in this example, and the microcontroller is
operated from a 8MHz crystal

Author: Dogan Ibrahim
Date: October, 2011
**/

#define LCD_RS PORTB.F4
#define LCD_E PORTB.F5

//
// This function toggles the E input of the LED
//
void Toggle_E(void)
{

LCD_E = 1;
LCD_E = 0;

}

//
// This fucntion sends a command to the LCD
//
void Lcd_Write_Cmd(unsigned char c)
{

PORTB = (PORTB & 0xF0) | (c >> 4); // Send upper nibble
Toggle_E();
PORTB = (PORTB & 0xF0) | (c & 0x0F); // Send lower nibble
Toggle_E();
Delay_us(40);

}

//
// This function initializes the LCD
//

Figure 6.10 LCD setup and display program

178 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

void Lcd_Initialize(void)
{

Delay_Ms(15);
LCD_RS = 0;
PORTB = 0x03;
Toggle_E();
Delay_Ms(5);
Toggle_E();
Delay_us(160);
Toggle_E();
Delay_us(160);
PORTB = 0x02; // In 4-bit mode
Toggle_E();
Delay_us(40);
Lcd_Write_Cmd(0x28); // 4-bit mode, 5x7 font
Lcd_Write_Cmd(0x08); // Display OFF
Lcd_Write_Cmd(0x0F); // Display ON, cursor blink
Lcd_Write_Cmd(0x06); // Set entry mode

}

//
// This function writes a character to the LCD
//
void Lcd_Write_Char(char c)
{

LCD_RS = 1; // In data mode
PORTB = (PORTB & 0xF0) | (c >> 4); // Send upper nibble
Toggle_E();
PORTB = (PORTB & 0xF0) | (c & 0x0F); // Send lower nibble
Toggle_E();
Delay_us(40);

}

//
// This function clears the LCD
//
Lcd_Clear(void)
{

LCD_RS = 0; // In command mode
Lcd_Write_Cmd(0x01); // Write a command
Delay_Ms(2);

}

//
// This is the main program to test the LCD
//
void main()
{

char Txt[] = "Hello"; // Text to be displayed

Figure 6.10 (Continued)

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 179

www.it-ebooks.info

http://www.it-ebooks.info/

Lcd_Initialise: This function initialises the LCD in 4-bit mode, as described earlier. The

enable clock pulses are sent to the LCD by calling to function Toggle_E, which simply

sets the E line to HIGH and then LOW. The 4-bit LCD commands are sent using function

Lcd_Write_Cmd.

Lcd_Write_Cmd: This function receives a byte, separates it into two nibbles, sends the high

nibble, followed by the low nibble. The E line is toggled after each output.

Lcd_Clear: This function clears the LCD and homes the cursor.

Lcd_Write_Char: This function sends a character to the LCD. The upper nibble is sent first,

followed by the lower nibble. Line E is toggled between each output.

Toggle_E: This function toggles the E line by first sending a HIGH and then a LOW signal.

The LCD setup functions are tested by the main program in Figure 6.10. Here, PORT B

pins are configured to be output. Then the LCD is initialised by calling Lcd_Initialise and

LCD is cleared by calling function Lcd_Clear. The text ‘Hello’ is then sent to the LCD by

using function Lcd_Write_Char, where each character is sent individually using a for loop.

6.7 mikroC Pro for PIC LCD Functions

The mikroC Pro for PIC language provides a library of LCD functions for the HD44780 type

controller. The library functions are based on using 4-bit interface. A list of the offered func-

tions and their usage are described in this section.

6.7.1 Lcd_Init

This function initialises the LCD module and it must be called before any of the other LCD

functions are called. The function is called with no arguments. Before the function is called,

the interface between the microcontroller and the LCD must be defined using statements of

the following format:

//Lcdpinout settings

sbit LCD_RS at RB4_bit;

sbit LCD_EN at RB5_bit;

sbit LCD_D7 at RB3_bit;

sbit LCD_D6 at RB2_bit;

sbit LCD_D5 at RB1_bit;

sbit LCD_D6 at RB2_bit;

sbit LCD_D5 at RB1_bit;

sbit LCD_D4 at RB0_bit;

char i;

TRISB = 0; // PORT B is output
Lcd_Initialize(); // Initialize LCD
Lcd_Clear(); // Clear LCD

for(i = 0; i < 5; i++)Lcd_Write_Char(Txt[i]); // Send characters to LCD
}

Figure 6.10 (Continued)

180 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

//Pin direction

sbit LCD_RS_Direction at TRISB4_bit;

sbit LCD_EN_Direction at TRISB5_bit;

sbit LCD_D7_Direction at TRISB3_bit;

sbit LCD_D6_Direction at TRISB2_bit;

sbit LCD_D5_Direction at TRISB1_bit;

sbit LCD_D4_Direction at TRISB0_bit;

The configuration above assumes that the connection between the LCD and the microcon-

troller is as follows:

LCD Microcontroller Port

RS RB4

EN RB5

D7 RB3

D6 RB2

D5 RB1

D4 RB0

Example call: Lcd_Init();

6.7.2 Lcd_Out

This function displays text on the LCD starting from specified row and column positions.

Both string variables and literals can be passed as a text.

Example call: Lcd_Out(1, 3, “Hello”); //Display text “Hello” at row 1,

column 3

6.7.3 Lcd_Out_Cp

This function displays text at the current cursor position. Both string variables and literals

can be passed as text.

Example call: Lcd_Out_Cp(“Hello”); //Display text “Hello” at current

position

6.7.4 Lcd_Chr

This function displays a single character at the specified row and column positions. Both

variables and literals can be passed as a character.

Example call: LcdChrt(1, 2, ‘X’); //Display character “X” at row 1, column 2

6.7.5 Lcd_Chr_Cp

This function displays a single character at the current cursor position. Both variables and

literals can be passed as a character.

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 181

www.it-ebooks.info

http://www.it-ebooks.info/

Example call: Lcd_Chr_Cp(‘X’); //Display character “X” at current position

6.7.6 Lcd_Cmd

This function sends a command to the LCD. A list of the valid commands is given in

Table 6.5.

Example call: Lcd_Cmd(_LCD_CLEAR); //Clear display

The mikroC Pro for PIC LCD functions will be used in Chapter 11 when we develop LCD

based projects.

6.8 Summary

This chapter has briefly described the operating principles of LCD displays when used in

microcontroller based circuits.

The creation of user defined characters has been described with an example.

The LCD instructions and the LCD initialisation sequence have been given for both 4-bit

and 8-bit interfaces. A C program is given to show how the LCD can be initialised from the

first principles and how it can be used in a program.

mikroC Pro for PIC language provides a library of LCD functions that can be extremely

useful while developing LCD based microcontroller projects. A list of the available functions

is given, with examples to show how they can be called from C programs.

Table 6.5 Valid LCD commands

LCD Command Purpose

_LCD_FIRST_ROW Move cursor to the 1st row

_LCD_SECOND_ROW Move cursor to the 2nd row

_LCD_THIRD_ROW Move cursor to the 3rd row

_LCD_FOURTH_ROW Move cursor to the 4th row

_LCD_CLEAR Clear display

_LCD_RETURN_HOME Return cursor to home position, returns a shifted display to its

original position. DDRAM is unaffected.

_LCD_CURSOR_OFF Turn off cursor

_LCD_UNDERLINE_ON Underline cursor on

_LCD_BLINK_CURSOR_ON Blink cursor on

_LCD_MOVE_CURSOR_LEFT Move cursor left without changing DD RAM

_LCD_MOVE_CURSOR_RIGHT Move cursor right without changing DD RAM

_LCD_TURN_ON Turn LCD display on

_LCD_TURN_OFF Turn LCD display off

_LCD_SHIFT_LEFT Shift display left without changing DDRAM

_LCD_SHIFT_RIGHT Shift display right without changing DD RAM

182 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

6.1 Draw a circuit diagram to show the typical connection of an LCD to a microcontroller

when the LCD is used in 4-bit interface mode.

6.2 Explain the functions of the LCD pins.

6.3 Describe how a user defined character can be created for an LCD. What data should

be loaded into the CGRAM to create a ‘þ ’ symbol?

6.4 Describe the steps required to initialise an LCD for operation in 4-bit mode.

6.5 What are the advantages of using an LCD in 4-bit mode?

6.6 What are the advantages of using an LCD in 8-bit mode?

6.7 Draw a flowchart to show the steps required to initialise an LCD in 4-bit mode.

6.8 Modify the program given in Figure 6.10 by adding a function to home the cursor.

6.9 What LCD functions are available in the mikroC Pro for PIC language? Show the

program code required to display text ‘Computer’, starting from column 3 of the sec-

ond row.

6.10 Write the mikroC Pro for PIC program code required to clear only the top row of a

2� 16 LCD.

6.11 Write a mikroC Pro for PIC program code to display texts ‘LED’ and ‘LCD’ in rows 1

and 2 of a 2� 16 LCD, respectively.

Liquid Crystal Displays (LCDs) and mikroC Pro for PIC LCD Functions 183

www.it-ebooks.info

http://www.it-ebooks.info/

7

Graphics LCD Displays (GLCD)

Graphics LCD displays (GLCDs) are commonly used in many scientific applications, where

we may want to display graphical data, such as a bar-chart or x-y line graph, for example a

graph showing the change of temperature over time, and so on. GLCDs are also used in many

consumer applications, such as mobile phones, MP3 players, GPS systems, games, educa-

tional toys, and so on. Another important application area of GLCDs is in industrial automa-

tion and control, where various plant characteristics can easily be monitored or changed.

Most GLCD applications nowadays make use of touch-screen facilities. As we shall see

later, a touch screen is basically a transparent layer with touch sensitive cells, placed on top

of a standard GLCD. When the user touches the screen, the screen co-ordinates of the

touched point are sent to the processor. For example, nearly all mobile phone manufacturers

offer touch-screen phones, where users can easily navigate between different screens and

make choices by simply touching on the displayed items, thus avoiding the use of buttons

for screen navigation.

There are several GLCD screens and GLCD controllers in use currently. For small applica-

tions, the 128� 64 pixel monochrome GLCD with the KS0108 controller is one of the most

commonly used displays. For larger display requirements and more complex projects, we can

select the 240� 128 pixel monochrome GLCD screen with the T6963 (or RA6963) controller.

For colour GLCD based applications, TFT type displays seem to be the best choice currently.

In this chapter we shall be looking at how the standard 128� 64 GLCD can be interfaced and

used in microcontroller based projects. In addition, the principles and use of the touch-screen

displays will be described in this chapter. The use of 240� 128 pixel GLCDs and TFT based

colour GLCDs will be described in later chapters, when we develop display based projects.

7.1 The 128� 64 Pixel GLCD

These GLCDs have dimensions 7.8� 7.0 cm and a thickness of 1.0 cm. The viewing area is

6.2� 4.4 cm. The display consists of 128� 64 pixels, organised as 128 pixels in the horizon-

tal direction and 64 pixels in the vertical direction. The display operates with þ5 V supply,

consumes typically 8mA current, and comes with a built-in KS0108 type display controller.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

A backlight LED is provided for visibility in low ambient light conditions. This LED con-

sumes about 360mAwhen operated.

The block diagram of the GLCD is shown in Figure 7.1. Basically, two controllers are

used internally: one for segments 1 to 64, and the other for segments 65 to 128.

The display is connected to the external world through a 20-pin SIL (Single-In-Line) type

connector. Table 7.1 gives the pin numbers and corresponding pin names.

Figure 7.1 Block diagram of the GLCD with KS0108 controller

Table 7.1 128� 64 pixel GLCD pin configuration

Pin No Pin Name Function

1 \CSAor CS1 Chip select for controller 1

2 \CSB or CS2 Chip select for controller 2

3 VSS Ground

4 VDD þ5V

5 V0 Contrast adjustment

6 D/I Register select

7 R/W Read-write

8 E Enable

9 DB0 Data bus bit 0

10 DB1 Data bus bit 1

11 DB2 Data bus bit 2

12 DB3 Data bus bit 3

13 DB4 Data bus bit 4

14 DB5 Data bus bit 5

15 DB6 Data bus bit 6

16 DB7 Data bus bit 7

17 RST Reset

18 VEE Negative voltage

19 A LED þ4.2V

20 K LED ground

186 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The description of each pin is as follows:

/CSA, /CSB: Chip select pins for the two controllers. The display is

logically divided into two sections and these signals control, which half

should be enabled at any time.

VCC, GND: Power supply and ground pins

V0: Contrast adjustment. A 10 KB potentiometer should be used to adjust the

contrast. The wiper arm should be connected to this pin, the other two arms

should be connected to VEE and ground.

D/I: Register select pin. Logic HIGH is data mode, logic LOW is instruction

mode

R/W: Read-write pin. Logic HIGH is read, logic LOW is write

E: Enable pin. Logic HIGH to LOW to enable

DB0 – DB7: Data bus pins

RST: Reset pin. The display is reset if this pin is held LOW for at least 100

ns. During reset the display is off and no commands can be executed by the

display controller.

VEE: Negative voltage outputpin for contrast adjustment.

A, K: Power supply and ground pins for the backlight. Pin K should be

connected to ground and pin A should be connected +5 V supply through a

10 ohm resistor.

Figure 7.2 shows connection of the GLCD to a microcontroller, with the contrast adjust-

ment potentiometer and backlight LED connections also shown.

7.2 Operation of the GLCD Display

The internal operation of the GLCD display and the KS0108 controller are very complex and

beyond the scope of this book. Most microcontroller compiler developers provide libraries

for using these displays in their programming languages. mikroC Pro for PIC compiler pro-

vides a very advanced GLCD library, and we shall be looking at the details of the functions

in this library in the next section. In this section, only the basic information required before

using the GLCD library are given.

Figure 7.3 shows the structure of the GLCD, as far as programming the display is con-

cerned. The 128� 64 pixel display is logically split into two halves. There are two control-

lers: controller A controlling the left half of the display and controller B controlling the right

half, where the two controllers are addressed independently. Each half of the display consists

of 8 pages, where each page is 8 bits high and 8 bytes (64 bits) wide. Thus, each half consists

of 64� 64 bits. Text is written to the pages of the display. Thus, a total of 16 characters

Graphics LCD Displays (GLCD) 187

www.it-ebooks.info

http://www.it-ebooks.info/

across can be written for a given page on both halves of the display. Considering that there

are 8 pages, a total of 128 characters can be written on the display.

The origin of the display is the top left-hand corner (see Figure 7.4). The X-direction

extends towards the right, and the Y-direction extends towards the bottom of the display. In

Figure 7.2 Connecting the 128� 64 GLCD to a microcontroller

Controller 1 Controller 2
PAGE 0 PAGE 0
PAGE 1 PAGE 1
PAGE 2 PAGE 2
PAGE 3 PAGE 3
PAGE 4 PAGE 4
PAGE 5 PAGE 5

PAGE 6PAGE 6
PAGE 7 PAGE 7
64 bits 64 bits

0 .….… 63
1
2 ……..
3
4 ….…
5
6
7

64 bits

64 bits

Figure 7.3 Structure of the GLCD

188 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

the X-direction, the pixels range from 0 to 127, while in the Y-direction, the pixels range

from 0 to 63. Co-ordinate (127, 63) is at the bottom right-hand corner of the display.

7.3 mikroC Pro for PIC GLCD Library Functions

mikroC Pro for PIC language supports the 128� 64 pixel GLCDs and provides a large library

of functions for the development of GLCD based projects. In fact, there are libraries for sev-

eral different types of GLCDs. In this section we shall be looking at the commonly used

library functions provided for the 128� 64 GLCDs, working with the KS0108 controller.

7.3.1 Glcd_Init

This function initialises the GLCD module. The function is called with no arguments and it

must be called before any other GLCD functions are called.

The GLCD control and data lines can be configured by the user, but the 8 data lines must

be on a single port. Before this function is called, the interface between the GLCD and the

microcontroller must be defined using sbit type statements of the following format. In the

following example, it is assumed that the GLCD data lines are connected to PORT D, and in

addition the CS1, CS2, RS, RW, EN and RST lines are connected to PORT B:

// GLCDpinout settings

charGLCD_DataPortat PORTD;

sbit GLCD_CS1 at RB0_bit;

sbit GLCD_CS2 at RB1_bit;

sbit GLCD_RS at RB2_bit;

Figure 7.4 GLCD display coordinates

Graphics LCD Displays (GLCD) 189

www.it-ebooks.info

http://www.it-ebooks.info/

sbit GLCD_RW at RB3_bit;

sbit GLCD_EN at RB4_bit;

sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;

sbit GLCD_CS2_Direction at TRISB1_bit;

sbitGLCD_RS_Directionat TRISB2_bit;

sbitGLCD_RW_Directionat TRISB3_bit;

sbitGLCD_EN_Directionat TRISB4_bit;

sbitGLCD_RST_Directionat TRISB5_bit;

Example Call: Glcd_Init();

7.3.2 Glcd_Set_Side

This function selects the GLCD side based on the argument, which is the x-co-ordinate. Val-

ues from 0 to 63 specify the left side of the display, while values from 64 to 127 specify the

right side.

Example Call: Glcd_Set_Side(0); // Select left hand side of display

7.3.3 Glcd_Set_X

This function sets the x-axis position from the left border of the GLCD within the selected

display side.

Example Call: Glcd_Set_X(10); // Set position to pixel 10

7.3.4 Glcd_Set_Page

This function selects a page of the GLCD. The argument to the function is the page number

between 0 and 7.

Example Call: Glcd_Set_Page(2); // Select Page 2

7.3.5 Glcd_Write_Data

This function writes 1 byte to the current location on GLCD memory and moves to the next

location. The GLCD side, and page number should be set before calling this function.

Example Call: Glcd_Write_Data(MyData);

7.3.6 Glcd_Fill

This function fills the GLCD memory with the specified byte pattern, where the pattern is

passed as an argument to the function.

Example Call: Glcd_Fill(0); // Clears the screen

190 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

7.3.7 Glcd_Dot

This function draws a dot on GLCD at co-ordinates x_pos, y_pos. The x and y co-ordinates

and the colour of the dot are passed as arguments. Valid x co-ordinates are 0 to 127, valid y

co-ordinates are 0 to 63, and valid colours are 0 to 2, where 0 clears the dot, 1 places a dot,

and 2 inverts the dot.

Example Call: Glcd_Dot(0, 10, 1); // Place a dot at x = 0, y = 10

7.3.8 Glcd_Line

This function draws a line on the GLCD. The arguments passed to the function are:

x_start: x co-ordinate of the line starting position (0 to 127)

y_start: y co-ordinate of the line starting position (0 to 63)

x_end: x co-ordinate of the line ending position (0 to 127)

y_end: y co-ordinate of the line ending position (0 to 63)

colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.

Example Call: Glcd_Line(0, 0, 5, 10, 1); // Draw a line from (0,0)

to (5,10)

7.3.9 Glcd_V_Line

This function draws a vertical line on the GLCD. The arguments passed to the function are:

y_start: y co-ordinate of the line starting position (0 to 63)

y_end: y co-ordinate of the line ending position (0 to 63)

x_pos: x co-ordinate of the vertical line (0 to 127)

colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.

Example Call: Glcd_V_Line(4, 10, 5, 1); // Draw a line from (5,4)

to (5,10)

7.3.10 Glcd_H_Line

This function draws a horizontal line on the GLCD. The arguments passed to the

function are:

x_start: x co-ordinate of the line starting position (0 to 127)

x_end: x co-ordinate of the line ending position (0 to 127)

y_pos: y co-ordinate of the vertical line (0 to 63)

colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.

Graphics LCD Displays (GLCD) 191

www.it-ebooks.info

http://www.it-ebooks.info/

Example Call: Glcd_H_Line(15, 55, 25, 1); // Draw a line from

(15,25) to (55,25)

7.3.11 Glcd_Rectangle

This function draws a rectangle on the GLCD. The arguments passed to the function are:

x_upper_left: x co-ordinate of the upper left corner of rectangle

(0 to 127)

y_upper_left: y co-ordinate of the upper left corner of rectangle

(0 to 63)

x_bottom_right: x co-ordinate of the lower right corner of rectangle

(0 to 127)

y_bottom_right: y co-ordinate of the lower right corner of rectangle

(0 to 63)

colour: The colour value between 0 and 2. 0 is white, 1 is black,

and 2 inverts each dot.

Example Call: Glcd_Rectangle(5, 5, 10, 10);

//Draw rectangle between (5,5) and (10,10)

7.3.12 Glcd_Rectangle_Round_Edges

This function draws a rounded edge rectangle on the GLCD. The arguments passed to the

function are:

x_upper_left: x co-ordinate of the upper left corner of rectangle

(0 to 127)

y_upper_left: y co-ordinate of the upper left corner of rectangle

(0 to 63)

x_bottom_right: x co-ordinate of the lower right corner of rectangle

(0 to 127)

y_bottom_right: y co-ordinate of the lower right corner of rectangle

(0 to 63)

round radius: radius of the rounded edge

colour: The colour value between 0 and 2. 0 is white, 1 is black,

and 2 inverts each dot.

Example Call: Glcd_Rectangle_Round_Edge(5, 5, 10, 10, 15, 1);

// Draw rectangle between (5,5) and (10,10) with

edge radius 15

7.3.13 Glcd_Rectangle_Round_Edges_Fill

This function draws a filled rounded edge rectangle on the GLCD with colour. The argu-

ments passed to the function are:

192 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

x_upper_left: x co-ordinate of the upper left corner of rectangle

(0 to 127)

y_upper_left: y co-ordinate of the upper left corner of rectangle

(0 to 63)

x_bottom_right: x co-ordinate of the lower right corner of rectangle

(0 to 127)

y_bottom_right: y co-ordinate of the lower right corner ofrectangle

(0 to 63)

round radius: radius of the rounded edge

colour: colour of the rectangle border. The colour value is

between 0 and 2. 0 is white, 1 is black, and 2 inverts

each dot.

Example Call: Glcd_Rectangle_Round_Edges_Fill(5, 5, 10, 10, 15, 1);

// Draw rectangle between (5,5) and (10,10) with

edge radius 15

7.3.14 Glcd_Box

This function draws a box on the GLCD. The arguments passed to the function are:

x_upper_left: x co-ordinate of the upper left corner of box (0 to 127)

y_upper_left: y co-ordinate of the upper left corner of box (0 to 63)

x_bottom_right: x co-ordinate of the lower right corner of box (0 to 127)

y_bottom_right: y co-ordinate of the lower right corner of box (0 to 63)

colour: colour of the box fill.The colour value is between 0

and 2. 0 is white, 1 is black, 2 inverts each dot.

Example Call: Glcd_Box(5, 15, 20, 30, 1); // Draw box between

(5,15) and (20,30)

7.3.15 Glcd_Circle

This function draws a circle on the GLCD. The arguments passed to the function are:

x_center: x co-ordinate of the circle center (0 to 127)

y_center: y co-ordinate of the circle center (0 to 63)

radius: radius of the circle

colour: colour of the circle line. The colour value is between 0 and 2. 0

is white, 1 is black, 2 inverts each dot.

Example Call: Glcd_Circle(30, 30, 5, 1);

// Draw circle with center at (30,30), and radius 5

Graphics LCD Displays (GLCD) 193

www.it-ebooks.info

http://www.it-ebooks.info/

7.3.16 Glcd_Circle_Fill

This function draws a filled circle on the GLCD. The arguments passed to the function are:

x_center: x co-ordinate of the circle center (0 to 127)

y_center: y co-ordinate of the circle center (0 to 63)

radius: radius of the circle

colour: The colour value is between 0 and 2. 0 is white, 1 is black, 2

inverts each dot.

Example Call: Glcd_Circle_Fill(30, 30, 5, 1);

// Draw a filled circle with center at (30,30), and radius 5

7.3.17 Glcd_Set_Font

This function sets the font that will be used with functions: Glcd_Write_Char and Glcd_

Write_Text. The arguments passed to the function are:

activeFont: font to be set. Needs to be formatted as an array of char

aFontWidth: width of the font characters in dots.

aFontHeight: height of the font characters in dots.

aFontOffs: number that represents difference between the mikroC Pro

for PICcharacter set and regular ASCII set (eg. if ’A’ is 65

in ASCII character, and ’A’ is 45 in the mikroC Pro for

PICcharacter set, aFontOffs is 20)

List of supported fonts are:

� Font_Glcd_System3� 5;
� Font_Glcd_System5� 7;
� Font_Glcd_5� 7;
� Font_Glcd_Character8� 7.

Example Call: Glcd_Set_Font(&MyFont, 5, 7, 32);

//Use custom 5x7 font MyFont which starts with space

character (32)

7.3.18 Glcd_Set_Font_Adv

This function sets the font that will be used with functions: Glcd_Write_Char_Adv and

Glcd_Write_Text_Adv. The arguments passed to the function are:

activeFont: font to be set. Needs to be formatted as an array of char.

font_colour: sets font colour.

font_orientation: sets font orientation.

Example Call: Glcd_Set_Font_Adv(&MyFont, 0, 0);

194 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

7.3.19 Glcd_Write_Char

This function displays a character on the GLCD. If no font is specified, then the default

Font_Glcd_System5� 7 font supplied with the library will be used. The arguments passed

to the function are:

chr: character to be displayed

x_pos: character starting position on x-axis (0 to 127- FontWidth)

page_num: the number of the page on which the character will be

displayed (0 to 7)

colour: colour of the character between 0 and 2. 0 is white, 1 is

black, 2 inverts each dot

Example Call: Glcd_Write_Char(’Z’, 10, 2, 1);

//Display character Z at x position 10, inside page 2

7.3.20 Glcd_Write_Char_Adv

This function displays a character on the GLCD at co-ordinates (x, y).

ch: character to be displayed.

x: character position on x-axis.

y: character position on y-axis.

Example Call: Glcd_Write_Char_Adv(’A’, 20, 10,); // Display A at (20,10)

7.3.21 Glcd_Write_Text

This function displays text on the GLCD. If no font is specified, then the default Font_Glcd_

System5� 7 font supplied with the library will be used. The arguments passed to the func-

tion are:

text: text to be displayed

x_pos: text starting position on x-axis.

page_num: the number of the page on which text will be displayed (0 to 7)

colour: The colour parameter between 0 and 2. 0 is white, 1 is black

and 2 inverts eachdot.

Example Call: Glcd_Write_Text(“My Computer”, 10, 3, 1);

//Display “My Computer” at x position 10 in page 3

7.3.22 Glcd_Write_Text_Adv

This function displays text on the GLCD at co-ordinates (x, y). The arguments passed to the

function are:

Graphics LCD Displays (GLCD) 195

www.it-ebooks.info

http://www.it-ebooks.info/

text: text to be displayed

x: text position on x-axis.

y: text position on y-axis.

Example Call: Glcd_Write_Text_Adv(“My Computer”, 10, 10);

//Display text “My Computer” at coordinates (10,10)

7.3.23 Glcd_Write_Const_Text_Adv

This function displays text on the GLCD, where the text is assumed to be located in the

program memory of the microcontroller. The text is displayed at co-ordinates (x, y). The

arguments passed to the function are:

text: text to be displayed

x: text position on x-axis.

y: text position on y-axis.

const char Txt[] = “My Computer”;

Example Call: Glcd_Write_Text_Adv(Txt, 10, 10);

//Display text “My Computer” at coordinates (10,10)

7.3.24 Glcd_Image

This function displays a bitmap image on the GLCD. The image to be displayed is passed as

an argument to the function. The bitmap image array must be located in the program mem-

ory of the microcontroller. The GLCD Bitmap Editor of mikroC Pro for PIC compiler can be

used to convert an image to a constant, so that it can be displayed by this function.

Example Call: Glcd_Image(MyImage);

7.4 Example GLCD Display

An example program is given in this section, to show how the various GLCD library func-

tions can be used. The example program listing is shown in Figure 7.5. Notice that at the

beginning of the program, PORT B and PORT D I/O pins are configured as digital by clear-

ing ANSELB and ANSELD registers to 0. This is necessary, since we are using a

PIC18F45K22 type microcontroller. Different PIC microcontrollers may require different

settings to configure their analogue ports as digital. The images displayed by this program

are shown in Figure 7.6. This image was obtained by connecting a GLCD to the EasyPIC 7

development board. The following shapes are drawn on the GLCD:

� a rectangle with rounded edges at co-ordinates (5, 5), (123, 59) and edge radius 10;
� a rectangle at co-ordinates (15, 15), (113, 49);
� a line from (50, 30) to (70, 30);
� a circle with centre at (30, 30) and radius 10;

196 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/**
GLCD LIBRARY FUNCTIONS EXAMPLE

This program uses some of the mikroC GLCD library functions to show
how the functions should be used in programs.

The program was loaded to a PIC18F45K22 microcontroller and operated with a
8MHz crystal. The EasyPIC 7 development board is used for this demo

Author: Dogan Ibrahim
Date: October, 2011
***/

// Glcd module connections
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

void main()
{

ANSELB = 0; // Configure PORT B as digital I/O
ANSELD = 0; // Configure PORT D as digital I/O

Glcd_Init(); // Initialize GLCD
Glcd_Fill(0x00); // Clear GLCD
Glcd_rectangle_round_edges(5,5,123,59,10,1); // Draw rectangle
Glcd_Rectangle(15,15,113,49,1); // Draw rectangle
Glcd_Line(50, 30, 70, 30, 1); // Draw line
Glcd_Circle(30,30,10,1); // Draw circle
Glcd_Circle_Fill(50,42,5,1); // Draw filled circle
Glcd_Set_Font(Font_Glcd_Character8x7, 8, 7, 32); // Change Font

Glcd_Write_Text("Txt", 80, 3, 2); // Write string “Txt”
Glcd_Write_Text("LCD",80,4,1); // Write string “LCD”
Glcd_Write_Text_Adv("micro",80,38); // Write string “micro”

}

Figure 7.5 Example GLCD program

Graphics LCD Displays (GLCD) 197

www.it-ebooks.info

http://www.it-ebooks.info/

� a filled circle with centre at (50, 42) and radius 5;
� text ‘Txt’ at x co-ordinate 80 and page 3;
� text ‘LCD’ at x co-ordinate 80 and page 4;
� text ‘micro’ at co-ordinates (80, 38).

The functions used to display each image are also shown in Figure 7.6.

7.5 mikroC Pro for PIC Bitmap Editor

mikroC Pro for PIC provides a tool for converting a bitmap image to a format, which can be

displayed on the GLCD screen using the Glcd_Image function described earlier. This tool is

accessed by clicking Tools -> GLCD Bitmap Editor from the drop-down menu. The user can

choose between three different types of GLCD controllers. You should choose the default

KS0108 controller from the tabs at the top of the screen. The GLCD size will automatically

be set to 128� 64 pixels. Choose the compiler as mikroC Pro for PIC from the bottom right-

hand corner of the display. Click button Load BMP to load the bitmap image you prepared

earlier to the program. The image should be displayed on the mikroC Pro for PICGLCD

screen. In this example, we have chosen the Bank image provided by the compiler as a

demo. As shown in Figure 7.7, the mikroC Pro for PIC code to be used to load to the GLCD

is automatically created at the bottom of the display.

Figure 7.6 Images displayed by the program in Figure 7.5

198 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

7.6 Adding Touch-screen to GLCDs

More and more consumer electronic products are now available with touch-screen inputs.

For example, electronic games, MP3 players, GPS receivers, mobile phones, PDAs, ATM

machines, industrial control systems, remote control devices, point-of-sale (POS) terminals,

advertisement show screens, information displays, and many more similar products offer

special screens where items are selected from a menu by simply touching the relevant part of

the screen.

Perhaps the biggest advantage of a touch screen display is that it eliminates the need for

keyboard input, resulting in a cheaper and lighter overall design. The user input facilities in

such devices are usually provided in the form of soft keypads, where the layout of a keypad

is displayed on a touch-screen panel, and the required characters and numbers can be entered

by simply touching the required key positions on the touch screen. A soft keypad also makes

it easier to enter and edit data quickly.

Another advantage of a touch-screen display is that it is usually much quicker to navigate

around the screen than using a keyboard or mouse type inputs. Also, in some applications,

such as GPS mapping and navigation, a desired geographical point can easily be selected by

simply touching the desired point on the screen. It may take more time and effort to accu-

rately select a point on a map using a keyboard and a mouse.

Touch-screen displays are also used in most POS systems, for example in restaurants and

supermarket check-outs to select a purchased item from a menu quickly, easily and reliably.

Perhaps the main advantage in such applications is the speed of making a correct selection.

Touch-screen displays have some disadvantages. Perhaps one of the greatest is that the

screen may get dirty, oily, and finger prints can accumulate on the screen after long usage by

the finger and as a result, it may become less sensitive to touch. Also, the screen can easily

become scratched, especially if a hard object is used to touch and navigate through the

Figure 7.7 ThemikroC Pro for PIC Bitmap Editor

Graphics LCD Displays (GLCD) 199

www.it-ebooks.info

http://www.it-ebooks.info/

screen. Touch screens can also cause stress on human fingers when used for more than a few

minutes at a time, since pressure is required to make a selection. A touch device (e.g. a sty-

lus) or fingernails can be used to prevent issues of direct touch. Another disadvantage is that

a touch-screen LCD display is usually more expensive than a standard LCD display. The

choice of whether or not to use a touch-screen display depends entirely on the nature of the

application, the cost and the level of user experience.

7.6.1 Types of Touch-screen Displays

Touch-screen displays are in the form of either large screen monitors, used for example in PC

systems, or small LCDs, used in microcontroller based systems. Although the principle of

operation is the same in either case, in this book the small LCD type touch-screen displays

are considered. Such displays usually have resolutions of 128� 64 pixels and are used in

battery operated intelligent devices.

A touch-screen LCD is basically a combination of a GLCD and a touch sensitive panel

mounted on top of the GLCD. The two parts are independent of each other: The panel senses

the co-ordinates where the user touches the screen, and the GLCD displays graphical infor-

mation on the LCD display based upon the user’s selection.

There are several types of touch-screen LCDs, such as resistive, capacitive, surface acous-

tic wave, optical imaging, strain gauge, and so on. The most commonly used are the resistive

and capacitive types, and some information about each type is given below.

A resistive touch screen consists of several layers, where two electrically conductive

resistive layers are separated by a very small gap and a flexible layer is used at the top. One

of the layers is connected to a voltage source. When a point is pressed on the screen, the

touched points of both conductive layers make a contact and if the voltage is read at the other

layer, this voltage will be proportional to the position of the point touched because of the

voltage dividing effect. Further details about resistive touch screens are given later.

A capacitive touch screen panel is coated with a material that stores electrical charges.

When the panel is touched, a small amount of charge is drawn to the point of contact and the

charge is measured at each corner of the panel and is then processed to determine the point

touched.

Resistive touch screens have the advantages that the screen responds when touched with

any kind of object, for example finger, stylus, nail, and so on. On the other hand, the capaci-

tive screens respond only when touched by a naked finger (e.g. they will not respond when

touched with an object or if wearing gloves). On the other hand, capacitive touch screens are

lower power devices, have higher granularities, and also provide higher clarity.

Resistive touch screens are used in microcontroller based projects in later chapters in this

book. Further information about resistive touch screens is given in the next section.

7.6.2 Resistive Touch Screens

Resistive touch screens are used in most low cost, medium resolution systems. A resistive

touch screen consists of at least three layers. As shown in Figure 7.8, the touch screen is

mounted on a GLCD. The bottom layer is glass (or acryl), coated with a resistive Indium Tin

Oxide (ITO) solution. On top of this, a resistive ITO coated poly Ethylene Terephthalate

200 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

(PTE) flexible film is used. The two conductive ITO layers are separated from each other

with microdot spacers, so that there is no contact between them when the screen is not

touched. When a pressure is applied to the top of the screen, for example by touching the

screen, the two ITO layers will make contact at the point of the touch. Electrical circuits are

then used to determine the point of the contact. Usually a 4-wire, 5-wire or 8-wire circuit is

used to determine the co-ordinates of the point touched by the user. These circuits are

described below in greater detail.

7.6.2.1 4-Wire Resistive Touch Screen

These are the least expensive and most commonly used types of resistive touch screens. Con-

ductive bus bars with silver ink are implanted at the opposite edges of a screen layer. The

principle of operation is such that, as shown in Figure 7.9, if one side of a layer is connected to

þVand the other side to ground, a potential gradient results on the screen layer, and the voltage

at any point on this layer becomes directly proportional to the distance from the þV side.

Figure 7.8 Resistive touch screen

Graphics LCD Displays (GLCD) 201

www.it-ebooks.info

http://www.it-ebooks.info/

In a 4-wire touch screen, two measurements are made one after the other, to determine

the X and Y co-ordinates of the point touched by the user. Figure 7.10a shows how the X

co-ordinate can be determined. Here, the right- and left-hand sides of the top layer can be

connected to þV and ground, respectively. The bottom layer can then be used to sense and

measure the voltage at the point touched by the user. An A/D converter is used to convert this

analogue voltage to digital and then to determine the X co-ordinate.

Similarly, Figure 7.10b shows how the Y co-ordinate can be determined. Here, the upper

and lower sides of the bottom layer can be connected to þV and ground, respectively. The

top layer can then be used to sense and measure the voltage at the point touched by the user.

Figure 7.10 Determining the X and Y co-ordinates (4-wire). (a) Determining the X co-ordinate.

(b) Determining the Y co-ordinate

Figure 7.9 Voltage gradient in a screen layer

202 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Again, an A/D converter is used to convert the voltage to digital and then to determine the Y

co-ordinate.

7.6.2.2 5-Wire Resistive Touch Screen

This is a modification of the basic 4-wire system, where one layer (usually the top layer) is

used for sensing and measuring the voltage, while the other layer is where the voltage gradi-

ent is created in X and Y directions. As shown in Figure 7.11a, to determine the X co-ordi-

nate, the upper and lower sides of the bottom layer can be connected to þV and ground,

respectively. The top layer is then used to sense and measure the voltage.

To determine the Y co-ordinate, we simply have to reverse polarity and sides of the bottom

layer (see Figure 7.11b). The Y co-ordinate is then read from the top layer.

7.6.2.3 8-Wire Resistive Touch Screen

An 8-wire touch screen is used when more accurate measurements of the screen co-ordinates

are required. In 4 and 5 wire implementations, the resistance of the bus bars and the connec-

tion circuitry usually introduce offset errors in voltage measurements. These offset errors can

drift with temperature, humidity and time. 8-wire touch screens compensate for drift by add-

ing 4 additional reference lines, thus enabling the voltage to be measured directly at the

touch screen bus bars. 8-wire touch screens are generally more expensive than others and are

not covered further in this book.

Example projects using the touch-screen GLCDs will be given in later chapters of this book.

7.7 Summary

This chapter has outlined briefly the different types of GLCDs available to the microcontrol-

ler based system designer. The GLCD chosen and used in this chapter was the commonly

used industry standard 128� 64 pixel GLCD, controlled by the popular KS0108 controller.

Figure 7.11 Determining the X and Y co-ordinates (5-wire). (a) Determining the X co-ordinate (b)

Determining the Y co-ordinate

Graphics LCD Displays (GLCD) 203

www.it-ebooks.info

http://www.it-ebooks.info/

The pin configuration of the GLCD and its connection to a microcontroller has been

explained.

mikroC Pro for PIC language supports a large number of library functions for several

types of GLCDs. In this chapter, the functions available for the KS0108 type GLCDs have

been explained in detail and example function calls are given.

mikroC Pro for PIC language also provides a tool for converting bitmap images to a for-

mat that can be loaded to GLCD displays with the help of mikroC Pro for PIC programs. The

use of this tool has been explained with the aid of an example.

Finally, operation of the touch-screen GLCDs has been described in detail, with reference

to resistive type touch-screen panels.

Exercises

7.1 Give some application areas of GLCDs.

7.2 Draw a circuit diagram to show the connection between a GLCD and a microcontrol-

ler. How many I/O pins are required to interface to a GLCD?

7.3 Explain operation of the KS0108 type GLCDs. How many pixels are there? How are

the pixels organised?

7.4 Draw a diagram to show the x and y axes of the standard 128� 64 pixel GLCD. Mark

the (0,0) point on your diagram.

7.5 Show how the GLCD library functions can be used to draw a rectangle.

7.6 Show how the GLCD library functions can be used to draw a circle.

7.7 Explain how a bitmap image that you have created can be loaded and displayed on a

GLCD.

7.8 Explain how many types of touch screens are available. What are the advantages and

disadvantages of each type?

7.9 Explain how the co-ordinates of a point touched on the screen can be read by a

microcontroller.

7.10 What are the advantages and disadvantages of resistive and capacitive touch screens?

204 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

8

Microcontroller Program
Development

Before writing a program, it is always helpful first to drive the program’s algorithm.

Although simple programs can easily be developed by writing the code prior to any prepara-

tion, the development of complex programs almost always become easier if the algorithm is

first derived. Once the algorithm is ready, writing of the actual program code is not a difficult

task.

A program’s algorithm can be described in a variety of graphic and text-based methods,

such as a flowchart, structure chart, data flow diagram, program description language (PDL),

and so on. The problem with graphical techniques is that it can be very time consuming to

draw shapes with text inside them. Also, it is a tedious task to modify an algorithm described

using graphical techniques.

Flowcharts can be very useful to describe the flow of control and data in small programs

where there are only a handful of diagrams, usually not extending beyond a page or two. The

PDL can be useful to describe the flow of control and data in small to medium size programs.

The main advantage of the PDL description is that it is very easy to modify a given PDL,

since it only consists of text.

In this chapter, we will mainly be using the PDL, but flowcharts will also be given where it

is felt to be useful. The next sections briefly describe the basic building blocks of the PDL

and flowcharts. It is left to the reader to decide which method to use during the development

of their programs.

8.1 Using the Program Description Language and Flowcharts

Program description language (PDL) is free-format English-like text, which describes the

flow of control and data in a program. PDL is not a programming language, but a collection

of keywords that enable a programmer to describe the operation of a program in a stepwise

and logical manner. In this section we will look at the basic PDL statements and their flow-

chart equivalents. The superiority of the PDL over flowcharts will become obvious when we

have to develop medium to large programs.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.1 BEGIN – END

Every PDL program description should start with a BEGIN and end with an END statement.

The keywords in a PDL description should be highlighted to make the reading easier. The

program statements should be indented and described between the PDL keywords. An exam-

ple is shown in Figure 8.1, together with the equivalent flow diagram.

8.1.2 Sequencing

For normal sequencing, the program statements should be written in English text and

describe the operations performed. An example is shown in Figure 8.2, together with the

equivalent flowchart.

8.1.3 IF – THEN – ELSE – ENDIF

The IF, THEN, ELSE and ENDIF should be used to conditionally change the flow of control

in a program. Every IF line should be terminated with a THEN, and every IF block should be

Figure 8.1 BEGIN – END statement and equivalent flowchart

Figure 8.2 Sequencing and equivalent flowchart

206 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

terminated with an ENDIF statement. Use of the ELSE statement is optional and depends on

the application. Figure 8.3 shows an example of using IF – THEN – ENDIF, while Figure 8.4

shows the use of IF – THEN – ELSE – ENDIF statements in a program and their equivalent

flowcharts.

8.1.4 DO – ENDDO

The DO – ENDDO statements should be used when it is required to create iterations, or

conditional or unconditional loops in programs. Every DO statement should be termi-

nated with an ENDDO. Other keywords, such as FOREVER or WHILE can be used after

Figure 8.3 Using IF – THEN – ENDIF statements

Figure 8.4 Using IF – THEN – ELSE – ENDIF statements

Microcontroller Program Development 207

www.it-ebooks.info

http://www.it-ebooks.info/

the DO statement, to indicate an endless loop or a conditional loop, respectively. Figure 8.5

shows an example of a DO – ENDDO loop executed 10 times. Figure 8.6 shows an endless

loop created using the FOREVER statement. The flowchart equivalents are also shown in

the figures.

Figure 8.5 Using DO – ENDDO statements

Figure 8.6 Using DO – FOREVER statements

208 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.5 REPEAT – UNTIL

REPEAT – UNTIL is similar to DO – WHILE, but here the statements enclosed by the

REPEAT – UNTIL block are executed at least once, while the statements enclosed by DO –

WHILE may not execute at all if the condition is not satisfied just before entering the DO

statement. An example is shown in Figure 8.7, with the equivalent flowchart.

8.1.6 Calling Subprograms

In some applications, a program consists of a main program and a number of subprograms

(or functions). A subprogram activation in PDL should be shown by adding the CALL state-

ment before the name of the subprogram. In flowcharts, a rectangle with vertical lines at each

side should be used to indicate the invocation of a subprogram. An example call to a sub-

program is shown in Figure 8.8, for both a PDL description and a flowchart.

8.1.7 Subprogram Structure

A subprogram should begin and end with the keywords BEGIN/name and END/name,

respectively, where name is the name of the subprogram. In flowchart representation, a

Figure 8.7 Using REPEAT – UNTIL statements

Microcontroller Program Development 209

www.it-ebooks.info

http://www.it-ebooks.info/

horizontal line should be drawn inside the BEGIN box and the name of the subprogram

should be written at the lower half of the box. An example subprogram structure is shown in

Figure 8.9, for both a PDL description and a flowchart.

Figure 8.8 Calling a subprogram

Figure 8.9 Subprogram structure

210 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Examples

Some examples are given in this section, to show how the PDL and flowcharts can be used in

program development.

Example 8.1

It is required to a write a program to convert hexadecimal numbers ‘A’ to ‘F’ into decimal. Show the

algorithm using a PDL and also draw the flowchart. Assume that the number to be converted is called

HEX_NUM and the output number is called DEC_NUM.

Solution 8.1
The required PDL is:

BEGIN

IF HEX_NUM = “A” THEN

DEC_NUM = 10

ELSE IF HEX_NUM = “B” THEN

DEC_NUM = 11

ELSE IF HEX_NUM = “C” THEN

DEC_NUM = 12

ELSE IF HEX_NUM = “D” THEN

DEC_NUM = 13

ELSE IF HEX_NUM = “E” THEN

DEC_NUM = 14

ELSE IF HEX_NUM = “F” THEN

DEC_NUM = 15

ENDIF

END

The required flowchart is shown in Figure 8.10. Notice that it is much easier to write the PDL state-

ments than drawing the flowchart shapes and writing text inside them.

Example 8.2

The PDL of part of a program is given as follows:

J = 0

M = 0

DO WHILE J < 10

DO WHILE M < 20

Flash the LED

Increment M

ENDDO

Increment J

ENDDO

Show how this PDL can be implemented by drawing a flowchart.

Solution 8.2
The required flowchart is shown in Figure 8.11. Here again, notice how complicated the flowchart can

be, even for a simple nested DOWHILE loop.

Microcontroller Program Development 211

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8.10 Flowchart solution

212 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8.3

It is required to write a program to calculate the sum of integer numbers between 1 and 100. Show the

algorithm using a PDL and also draw the flowchart. Assume that the sum will be stored in a variable

called SUM.

Solution 8.3
The required PDL is:

BEGIN

SUM = 0

I = 1

DO 100 TIMES

Figure 8.11 Flowchart solution

Microcontroller Program Development 213

www.it-ebooks.info

http://www.it-ebooks.info/

SUM = SUM + I

Increment I

ENDDO

END

The required flowchart is shown in Figure 8.12.

Example 8.4

It is required to write a program to calculate the sum of all the even numbers between 1 and 10 inclu-

sive. Show the algorithm using a PDL and also draw the flowchart. Assume that the sum will be stored

in a variable called SUM.

Figure 8.12 Flowchart solution

214 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Solution 8.4
The required PDL is:

BEGIN

SUM = 0;

CNT = 1

REPEAT

IF CNT is even number THEN

SUM = SUM + CNT

ENDIF

INCREMENT CNT

UNTIL CNT > 10

END

The required flowchart is shown in Figure 8.13. Notice how complicated the flowchart can be for a

very simple problem such as this.

Figure 8.13 Flowchart solution

Microcontroller Program Development 215

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Representing for Loops in Flowcharts

Most programs include some form of iteration or looping. One of the easiest ways to create a

loop in a C program is by using the for statement. This section shows how a for loop can be

represented in a flowchart. As shown below, there are several methods of representing a for

loop in a flowchart.

Suppose that we have a for loop as below and we wish to draw an equivalent flowchart.

for(m = 0; m < 10; m++)

{

Cnt = Cnt + 2*m;

}

Method 1

Figure 8.14 shows one of the methods for representing the above for loop as with a flowchart.

Here, the flowchart is drawn using the basic primitive components.

Method 2

Figure 8.15 shows the second method for representing the for loop with a flowchart. Here, a

hexagon shaped flowchart symbol is used to represent the for loop and the complete for loop

statement is written inside this symbol.

Figure 8.14 Method 1 for representing a for loop

216 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Method 3

Figure 8.16 shows the third method for representing the for loop with a flowchart. Here

again, a hexagon shaped flowchart symbol is used to represent the for loop and the symbol is

divided into three to represent the initial condition, the increment, and the terminating

condition.

Figure 8.15 Method 2 for representing a for loop

Figure 8.16 Method 3 for representing a for loop

Microcontroller Program Development 217

www.it-ebooks.info

http://www.it-ebooks.info/

8.4 Summary

This chapter has described the program development process using the PDL and flowcharts

as tools. The PDL is commonly used, as it is a simple and convenient method of describing

the operation of a program. The PDL consists of several English-like keywords. Although

the flowchart is also a useful tool, it can be very tedious in large programs to draw shapes

and write text inside them.

Exercises

8.1 Describe the various shapes used in drawing flowcharts.

8.2 Describe how the various keywords used in PDL can be used to describe the operation

of a program.

8.3 What are the advantages and disadvantages of flowcharts?

8.4 It is required to write a program to calculate the sum of numbers from 1 to 10. Draw a

flowchart to show the algorithm for this program.

8.5 Write the PDL statements for the question in (4) above.

8.6 It is required to write a program to calculate the roots of a quadratic equation, given

the coefficients. Draw a flowchart to show the algorithm for this program.

8.7 Write the PDL statements for the question in (6).

8.8 Draw the equivalent flowchart for the following PDL statements:

DO WHILE count < 10

Increment J

Increment count

ENDDO

8.9 It is required to write a function to calculate the sum of numbers from 1 to 10. Draw

a flowchart to show how the function subprogram and the main program can be

implemented.

8.10 Write the PDL statements for the question (9) above.

8.11 It is required to write a function to calculate the cube of a given integer number and

then call this function from a main program. Draw a flowchart to show how the func-

tion subprogram and the main program can be implemented.

8.12 Write the PDL statements for the question (8) above.

8.13 Draw the equivalent flowchart for the following PDL statements:

J = 0

K = 0

REPEAT

Flash LED A

Increment J

REPEAT

Flash LED B

Increment K

UNTIL K = 10

UNTIL J > 15

218 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9

LED Based Projects

In this and subsequent chapters, we will look at the design of projects using display devices,

such as LEDs, LCDs and GLCDs. The EasyPIC 7 development board is used in most of the

projects, but the full circuit diagram is given for the readers who may want to build a project,

but who may not have the EasyPIC 7 development board. We will start with very simple

projects and increase the complexity. All the projects given in the book are fully tested and

working. It is recommended that the reader moves through the projects in the given order, to

gain the maximum benefit.

The following will be provided for each project:

� the title;
� brief description;
� block diagram;
� circuit diagram;
� algorithmic description (PDL or flowchart);
� program listing;
� program description;
� suggestions for further development.

9.1 PROJECT 9.1 – Flashing LED

9.1.1 Project Description

This is perhaps the simplest project we can have. In this project, an LED is connected to bit 0

of PORT C (RC0) of a PIC18F45K22 type microcontroller (other PIC microcontrollers can

also be used). The reason for using this microcontroller is because the EasyPIC 7 develop-

ment board is equipped with this type of PIC microcontroller), operated from an 8 MHz crys-

tal. The LED is flashed with 1 second intervals.

As described in Section 5.1, an LED is connected to a microcontroller using a current

limiting resistor. An LED can be connected in two modes to a microcontroller output port:

current sinking mode or current sourcing mode.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

9.1.1.1 Current Sinking Mode

As shown in Figure 9.1, in current sinking mode the cathode of the LED is connected to the

microcontroller I/O port, while the anode is connected to þ5 V supply through a current

limiting resistor. Here, the LED is turned ON when the output of the microcontroller is at

logic LOW, where current flows into the microcontroller pin. The output current sink capa-

bility of each PIC microcontroller I/O pin is 25 mA. As was shown in Section 5.1, a 330 ohm

or smaller resistor should give a current of about 10 mA, which is sufficient to drive the LED

to give bright light.

9.1.1.2 Current Sourcing Mode

As shown in Figure 9.2, in current sourcing mode the anode of the LED is connected to the

microcontroller I/O port, while the cathode is connected to the ground through a current lim-

iting resistor. Here, the LED is turned ON when the output of the microcontroller is at logic

HIGH, where current flows out of the microcontroller pin. The output current source capabil-

ity of each PIC microcontroller I/O pin is 25 mA. As in the current sinking mode, a 330 ohm

or smaller resistor should provide the required LED brightness.

9.1.2 Block Diagram

The block diagram of the project is shown in Figure 9.3.

Figure 9.1 LED connected in current sinking mode

220 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.1.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 9.4. If using the EasyPIC 7 develop-

ment board, there is no need to change any jumper settings. An 8 MHz crystal is used

to provide the clock signal. The microcontroller is Reset using an external push-button

switch.

9.1.4 Project PDL

The PDL of this project is very simple and is given in Figure 9.5.

Figure 9.2 LED connected in current sourcing mode

Figure 9.3 Block diagram of the project

LED Based Projects 221

www.it-ebooks.info

http://www.it-ebooks.info/

9.1.5 Project Program

The program is named LED1.C and the program listing of the project is shown in Figure 9.6.

At the beginning of the project, PORT C is configured as a digital I/O port by clearing regis-

ter ANSELC (different PIC microcontrollers may require different settings). Then all the I/O

ports of PORT C are set to be outputs by clearing the TRISC register. An endless for loop is

then constructed and the LED is flashed with 1 second intervals using the Delay_Ms function

Figure 9.4 Circuit diagram of the project

Figure 9.5 PDL of the project

222 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

with an argument of 1000 (i.e. 1 s). Notice that the individual bits of a port can be accessed as

PORTn.Rnb, where n is the port name (A, B, C, D, etc.) and b is the bit number (0 to 7), or

as PORTn.Fb, or as Rnb_bit. Thus, bit 0 of PORT C can either be accessed as PORTC.RC0,

or as PORTC.F0, or as RC0_bit.

The program given in Figure 9.6 can be made more user friendly and easier to read if

‘#define’ pre-processor statements are used, as shown in program LED2.C in Figure 9.7.

9.1.6 Suggestion for a Change

The program given in Figure 9.6 simply flashes the LED with 1 second intervals. This pro-

gram can be modified, for example to simulate the flashing of lighthouse lights for maritime

educational purposes. Different lighthouse lights have different flashing characteristics (see

http://en.wikipedia.org/wiki/Light_characteristic), such as alternating, fixed, flashing, occult-

ing, quick flash, very quick flash, and so on.

As an example, we shall modify the program to simulate the lighthouse signal known as

VQ(3) 5s

This signal consists of 3 short flashes, each 500 ms on and 100 ms off, and repeated every

5 seconds (see Figure 9.8). The PDL of the modified program is shown in Figure 9.9, and the

/**
FLASHING LED

In this project an LED is connected to bit 0 of PORT C (RC0) of a PIC18F45K22 type
microcontroller (any other PIC microcontroller can also be used in this project). The
microcontroller is operated from an 8MHz crystal. The LED is flashed continuously
with 1 second intervals.

Author: Dogan Ibrahim
Date: October, 2011
File: LED1.C
**/

void main()
{

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // Configure PORT C as outputs

for(;;) // FOREVER loop
{

PORTC.RC0 = 1; // Turn ON LED
Delay_Ms(1000); // Wait 1 second
PORTC.RC0 = 0; // Turn OFF LED
Delay_Ms(1000); // Delay 1 second

}
}

Figure 9.6 Program listing

LED Based Projects 223

www.it-ebooks.info

http://www.it-ebooks.info/

program (named LED3.C) listing is shown in Figure 9.10. Notice that the period of the signal

is 5 seconds. The 3 flashes take 1.7 seconds, leaving 3.3 seconds before the flashing starts

again. The program contains a nested for loop. where the inner loop is repeated 3 times and

the outer loop is repeated forever.

/***
FLASHING LED

In this project an LED is connected to bit 0 of PORT C (RC0) of a PIC18F45K22 type
microcontroller (any other PIC microcontroller can also be used in this project).
The microcontroller is operated from an 8MHz crystal. The LED is flashed continuously
with 1 second intervals.

In this version of the program "define" pre-processor statements are used to make the
program more readable.

Author: Dogan Ibrahim
Date: October, 2011
File: LED2.C
**/
#define LED PORTC.F0 // LED is bit 0 of PORT C
#define ON 1
#define OFF 0
#define Delay_1_second Delay_Ms(1000)

void main()
{

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // Configure PORT C as outputs

for(;;) // FOREVER loop
{

LED = ON; // Turn ON LED
Delay_1_second; // Wait 1 second
LED = OFF; // Turn OFF LED
Delay_1_second; // Delay 1 second

}
}

Figure 9.7 More user friendly program

Figure 9.8 VQ(3) 10 s lighthouse signal

224 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9.9 PDL of the modified program

/**
FLASHING LIGHTHOUSE LED
--

In this project an LED is connected to bit 0 of PORT C (RC0) of a PIC18F45K22 type
microcontroller (any other PIC microcontroller can also be used in this project).
The microcontroller is operated from an 8MHz crystal.

In this project the LED simulates the flashing of a lighthouse light having the
characteristics:

VQ(3) 5s

where the light flashes 3 times with 500ms ON time and 100ms OFF time with a period
of 5 seconds.

Author: Dogan Ibrahim
Date: October, 2011
File: LED3.C
**/

void main()
{

unsigned char i;
ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // Configure PORT C as outputs

for(;;) // FOREVER loop
{

for(i= 0; i < 3; i++) // Do 3 times
{

PORTC.RC0 = 1; // Turn ON LED
Delay_Ms(500); // Wait 500 milliseconds
PORTC.RC0 = 0; // Turn OFF LED
Delay_Ms(100); // Wait 100 milliseconds

}
Delay_Ms(3300); // Wait 3.3 seconds

}
}

Figure 9.10 Listing of the modified program

LED Based Projects 225

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 PROJECT 9.2 – Binary Counting Up LEDs

9.2.1 Project Description

This is a simple project where 8 LEDs are connected to PORT C of a PIC microcontroller.

The LEDs count up in binary with a 1 second interval between each count. The pattern dis-

played by the LEDs will be as shown in Figure 9.11.

Figure 9.11 Binary counting up LEDs

226 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.2.2 Block Diagram

The block diagram of the project is shown in Figure 9.12.

9.2.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 9.13. If using the EasyPIC 7 develop-

ment board, there is no need to change any jumper settings. An 8 MHz crystal is used to

provide the clock signal. The microcontroller is Reset, using an external push-button

switch.

9.2.4 Project PDL

The PDL of this project is very simple and is given in Figure 9.14.

9.2.5 Project Program

The program is named LED4.C and the program listing of the project is given in Figure 9.15.

At the beginning of the project, variable Cnt is declared and initialised to 0. Notice that all

the variables used in a C program must be declared at the beginning of the program. Then,

PORT C is configured as a digital I/O port as before and an endless for loop is formed. Inside

Figure 9.12 Block diagram of the project

LED Based Projects 227

www.it-ebooks.info

http://www.it-ebooks.info/

this loop, variable Cnt is sent to PORT C, then after a delay of 1 second Cnt is incremented

and the loop is repeated forever.

9.2.6 Suggestions for Further Development

As an example, the project can be modified to count down after it reaches 255, or to count in

steps of an integer number, for example in steps of 2.

Figure 9.13 Circuit diagram of the project

Figure 9.14 PDL of the project

228 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 PROJECT 9.3 – Rotating LEDs

9.3.1 Project Description

In this project, 8 LEDs are connected to PORT C of a PIC microcontroller as in Project

2. The LEDs turn ON right to left (bit 0 towards bit 7) in a rotating manner, with a 1

second delay between each output where only one LED is ON at any time. If the LEDs

are arranged in a circular way, the pattern displayed by the LEDs will be as shows in

Figure 9.16.

9.3.2 Block Diagram

The block diagram of the project is as shown in Figure 9.12.

9.3.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 9.13.

/***
BINARY COUNTING UP LEDs

In this project 8 LEDs are connected to PORT C of a PIC18F45K22 type microcontroller
(any other PIC microcontroller can also be used in this project). The microcontroller is
operated from an 8MHz crystal.

In this project the LEDs count up in binary from 0 to 255 and then back to 0 with one
second delay between each count.

Author: Dogan Ibrahim
Date: October, 2011
File: LED4.C
***/

void main()
{

unsigned char Cnt = 0; // Declare and initialise Cnt
ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // Configure PORT C as outputs

for(;;) // FOREVER loop
{

PORTC = Cnt; // SendCnt to PORT C
Delay_Ms(1000); // Delay 1 second
Cnt++; // Increment Cnt

}
}

Figure 9.15 Program listing

LED Based Projects 229

www.it-ebooks.info

http://www.it-ebooks.info/

9.3.4 Project PDL

The PDL of this project is very simple and is given in Figure 9.17.

9.3.5 Project Program

The program is named LED5.C and the program listing of the project is given in Figure 9.18.

At the beginning of the project, variable Cnt is initialised to 1. PORT C is configured as a

digital I/O port as before. An endless for loop is then constructed and Cnt is sent to PORT C.

After a 1 second delay, Cnt is shifted left and the loop is repeated forever. Thus, Cnt takes the

values 1 2 4 8 16 32 64 128 1 2 . . .

9.3.6 Modification of the Program

The program given in Figure 9.18 rotates the LEDs left. Now we will modify the program so

that the LEDs rotate both left and right. In the modified program, after the last LED is lit

while rotating in one direction, the direction of rotation will change. Thus, for example,

Figure 9.16 Rotating LEDs

Figure 9.17 PDL of the project

230 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

while rotating right to left, if the LED at position RC7 is lit, then the rotation direction will

change to be from left to right, and the LED at position RC6 will be lit next, and so on. The

PDL of the modified program is shown in Figure 9.19.

The listing of the modified program (LED6.C) is shown in Figure 9.20. As before, a varia-

ble called Cnt is initialised and PORT C is configured as digital I/O. In addition, a variable

called Mode is used, which determines the direction of rotation. When Mode is 0, the LEDs

rotate from right to left, and when Mode is 1, the LEDs rotate from left to right. When the

last LED in a row is lit, the direction of rotation is changed by setting a new value in Cnt and

changing the value of Mode. Thus, Cnt takes the values 1 2 4 8 16 32 64 128 64 32 16 8 4 2

1 2 . . .

9.4 PROJECT 9.4 – Wheel of Lucky Day

9.4.1 Project Description

In this project, 7 LEDs are connected to PORT C of a PIC microcontroller. In addition, a

push-button switch (START) is connected to bit 7 of PORT C. The LEDs are numbered with

/***
ROTATING LEDs

In this project 8 LEDs are connected to PORT C of a PIC18F45K22 type microcontroller
(any other PIC microcontroller can also be used in this project). The microcontroller is
operated from an 8MHz crystal.

In this project the LEDs rotate left (RB0 through RB1 and so on) with one second delay
between each output.

Author: Dogan Ibrahim
Date: October, 2011
File: LED5.C
***/

void main()
{

unsigned char Cnt = 1; // Initialise Cnt
ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // Configure PORT C as outputs

for(;;) // FOREVER loop
{

PORTC = Cnt; // Send Cnt to PORT C
Delay_Ms(1000); // Delay 1 second
Cnt = Cnt << 1; // Shift left 1 digit
if(Cnt == 0)Cnt = 1; // If the last LED re-start

}
}

Figure 9.18 Program listing

LED Based Projects 231

www.it-ebooks.info

http://www.it-ebooks.info/

the days of the week, as shown in Figure 9.21. When the project is started, the LEDs are

turned ON and OFF very fast in a rotating manner, such that it is not possible to see which

LED is ON at any time. Pressing the button stops the rotation and only the last LED, which

was ON at the time, remains lit. The day corresponding to this number is your lucky day of

the week.

9.4.2 Block Diagram

The block diagram of the project is shown in Figure 9.22.

9.4.3 Circuit Diagram

In general, a push-button switch can be connected to microcontroller I/O pins using two

methods: Active Low and Active High.

The Active Low connection is shown in Figure 9.23. When the switch is not pressed, the

input pin of the microcontroller is at logic HIGH. Pressing the switch pulls down this pin to

logic LOW and this change of state can be determined by the program.

The Active High connection is shown in Figure 9.24. Here, when the switch is not con-

nected, the input of the microcontroller is at logic LOW. Pressing the switch pulls up this pin

to logic HIGH.

The circuit diagram of the project is as shown in Figure 9.25. 7 LEDs are connected to

PORT C pins RC0 to RC6. The push-button switch START is connected to bit 7 of PORT C

(RC7) in Active Low mode. If using the EasyPIC 7 development board, Jumper J7 should be

Figure 9.19 PDL of the modified program

232 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
ROTATING LEDs

In this project 8 LEDs are connected to PORT C of a PIC18F45K22 type microcontroller
(any other PIC microcontroller can also be used in this project). The microcontroller is
operated from an 8MHz crystal.

In this project the LEDs rotate right to left (RB0 through RB1 and so on) and left to right
(RB7 through RB6 and so on) with one second delay between each output.

Author: Dogan Ibrahim
Date: October, 2011
File: LED6.C
***/

void main()
{

unsigned char Cnt = 1; // Initialise Cnt
unsigned char Mode = 0; // Mode=0 right-to-left
ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // Configure PORT C as outputs

for(;;) // FOREVER loop
{

PORTC = Cnt; // Send Cnt to PORT C
Delay_Ms(1000); // Delay 1 second
if(Mode == 0)
{

Cnt = Cnt << 1; // Left shift Cnt
if(Cnt == 0) // Last LED lit
{

Cnt = 64;
Mode = 1; // Change direction

}
}
else
{

Cnt = Cnt >> 1; // Right shift Cnt
if(Cnt == 0) // Last LED lit
{

Cnt = 2;
Mode = 0; // Change direction

}
}

}
}

Figure 9.20 Listing of the modified program

LED Based Projects 233

www.it-ebooks.info

http://www.it-ebooks.info/

set to the lower position and DIP switch SW7 for pin RC7 should be set to PULL-UP

position. In this mode, the microcontroller input pin is normally at logic HIGH. When the

button is pressed, the input pin goes to logic LOW.

9.4.4 Project PDL

The PDL of the project is shown in Figure 9.26.

9.4.5 Project Program

The program is named LED7.C and the program listing of the project is shown in Figure 9.27.

At the beginning of the project, port RC7 is defined as STRT and variable Cnt is initialised

Figure 9.21 Wheel of lucky day

Figure 9.22 Block diagram of the project

234 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

to 1. PORT C bits RC0 to RC6 are configured as digital outputs and pin RC7 is configured as

a digital input. An endless for loop is then constructed and the program waits until the button

is pressed (until STRT is equal to 0). Once the button is pressed, an inner for loop is formed,

where the LEDs are lit and rotated very fast, with a 50 ms delay between each output. Inside

this inner for loop, the program checks whether or not the button is pressed (STRT is 0).

When the button is pressed, the program jumps outside the inner loop and waits until the

button is released. At this point, the last lit LED remains ON. After a 1 second delay, the

Figure 9.23 Active Low switch connection

Figure 9.24 Active High switch connection

LED Based Projects 235

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9.25 Circuit diagram of the project

Figure 9.26 PDL of the project

236 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

above process is repeated where the program waits for the button to be pressed again at the

beginning of the program.

9.4.6 Switch De- Bouncing

All mechanical switches are not perfect and they exhibit some form of contact bounce

problems. As the two metallic switch contacts are pressed together, there will be some

/***
WHEEL OF LUCKY DAY

In this project 7 LEDs are connected to PORT C of a PIC18F45K22 typemicrocontroller
(any other PIC microcontroller can also be used in this project). In addition, a push-button
switch is connected to bit 7 of PORT C (RB7). The microcontroller is operated from an
8MHz crystal.

In this project the LEDs are constructed in the form of a circle and the days of the week
are written next toeach LED. When the push-button switch is pressed the LEDs start
rotating fast. Pressing the button stops while only one LED is lit. The day name
corresponding to this LED is your lucky day!.

Author: Dogan Ibrahim
Date: October, 2011
File: LED7.C
***/
#define STRT PORTC.RC7

void main()
{

unsigned char Cnt = 1; // Initialise Cnt
ANSELC = 0; // Configure PORT C as digital
TRISC = 0x80; // RC0 - RC6 output, RC7 input
PORTC = 0;

for(;;) // DO FOREVER
{

while(STRT == 1); // Wait until START is pressed
while(STRT == 0); // Wait until button is released
for(;;) // FOREVER loop
{

PORTC = Cnt; // Send Cnt to PORT C
Delay_Ms(50); // Delay 50ms
Cnt = Cnt << 1; // Left shift Cnt
if(Cnt == 0)Cnt = 1;
if(STRT == 0)break; // If button is pressed

}
while(STRT == 0); // Wait until button is released
Delay_Ms(1000); // Wait 1 second

}
}

Figure 9.27 Program listing of the project

LED Based Projects 237

www.it-ebooks.info

http://www.it-ebooks.info/

short time (around 10 ms) before a stable electrical contact is made. During this period the

switch contacts generate many on-off contacts, as shown in Figure 9.28. This kind of

behaviour is not desirable in microcontroller based circuits, as the state of the switch input

may not be known exactly after a switch is pressed. The switch bouncing problems can be

eliminated either in hardware or software. In hardware, usually an RC circuit is used as a

filter, or a flip-flop is used to eliminate the switch contact bouncing. In software, a small

delay (e.g. 10 ms) is usually inserted after the switch state changes, in order to eliminate

contact bouncing.

mikroC Pro for PIC language provides a built-in function called ‘button’, which is

used to eliminate contact bouncing problems. Use of this function is recommended when

it is required to read the state of a mechanical switch. This function has the following

format:

Button(&port, pin, time, active_state)

where

port and pin specify the port where the switch is connected to. This pin must be specified as

an input pin;

time is the de-bounce period in milliseconds;

active_state is 1 or 0 and determines if the port pin is active upon logical 0 or logical 1.

A typical use of this function is given below. In this example, it is assumed that the switch

is connected to bit 0 of PORT B (i.e. RB0), the de-bounce time is set to 1 ms, and the port pin

is assumed to go to logic 1 when the switch is pressed:

Button(&PORTB, 0, 1, 1);

The program given in Figure 9.27 has been modified by using the Button function to de-

bounce the switch contacts. The new program (LED8.C) listing is shown in Figure 9.29.

Notice that the 1 second delay has been removed from this program, since there are no

switch contact problems.

Notice that if the Button library is not included in your project, you may get error during

the compilation time. To include this library, click View -> Library Manager from the drop-

down menu of the compiler and enable the Button library by clicking it.

Figure 9.28 Switch contact bouncing

238 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 PROJECT 9.5 – Random Flashing LEDs

9.5.1 Project Description

In this project, 8 LEDs are connected to PORT C of a PIC microcontroller, as in Project 2.

The LEDs turn ON and OFF randomly, with 500 ms interval between each output.

/***
WHEEL OF LUCKY DAY

In this project 7 LEDs are connected to PORT C of a PIC18F45K22 type microcontroller
(any other PIC microcontroller can also be used in this project). In addition, a push-button
switch is connected to bit 7 of PORT C (RB7). The microcontroller is operated from an
8MHz crystal.

In this project the LEDs are constructed inthe form of a circle and the days of the week
are written next to each LED. When the push-button switch is pressed the LEDs start
rotating fast. Pressing the button stops while only one LED is lit. The day name
corresponding to this LED is your lucky day!.

In this modified program the switch contacts are de-bounced using the mikroC
"Button" function

Author: Dogan Ibrahim
Date: October, 2011
File: LED8.C
***/

void main()
{

unsigned char Cnt = 1; // Initialise Cnt
ANSELC = 0; // Configure PORT C as digital
TRISC = 0x80; // RC0-RC6 output, RC7 input
PORTC = 0;

for(;;)
{

while(Button(&PORTC, 7, 5, 1)); // Wait until button is pressed
while(Button(&PORTC, 7, 5, 0)); // Wait until button is released
for(;;) // FOREVER loop
{

PORTC =Cnt; // Send Cnt to PORT C
Delay_Ms(50); // Delay 100ms
Cnt = Cnt << 1; // Left shift Cnt
if(Cnt == 0)Cnt = 1;
if(Button(&PORTC, 7, 5, 0))break; // If button is pressed

}
while(Button(&PORTC, 7, 5, 0)); // Wait until button is released

}
}

Figure 9.29 Modified program using the Button function

LED Based Projects 239

www.it-ebooks.info

http://www.it-ebooks.info/

9.5.2 Block Diagram

The block diagram of the project is as shown in Figure 9.12.

9.5.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 9.13.

9.5.4 Project PDL

The PDL of this project is very simple and is given in Figure 9.30.

9.5.5 Project Program

The program is named LED9.C and the program listing of the project is shown in Figure 9.31.

In this program, a pseudorandom number generator (Gerhard’s generator) function called

RandomNumber is used to generate an integer random number between 1 and 255. This

number is then sent to PORT C of the microcontroller every 500 ms. The LEDs flash ran-

domly, giving nice patterns of display. The random number generator function requires a

seed and the maximum number to be generated as its arguments.

9.6 PROJECT 9.6 – LED Dice

9.6.1 Project Description

In this project, 7 LEDs are organised in the form of a dice. A push-button switch (START) is

used, such that when the switch is pressed, a random number is displayed between 1 and 6 by

Figure 9.30 PDL of the project

240 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/**
RANDOM FLASHIMG LEDs

In this project 8 LEDs are connected to PORT C of a PIC18F45K22 type microcontroller.
(any other PIC microcontroller can also be used in this project) The microcontroller is
operated from an 8MHz crystal.

A pseudorandom number generator (Gerhard's generator) function is used to generate
an integer number between 1 and 255. This number is then sent to PORT C to flash
the LEDs ON and OFF randomly.

Author: Dogan Ibrahim
Date: October, 2011
File: LED9.C
**/

//
// This function generates a pseudorandom integer number between 1 and Lim
// A seed is given to the generator to start with
//
unsigned char RandomNumber(int Lim, int Y)
{

unsigned char Result;
static unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return Result;

}

//
// Start of main program
//
void main()
{

unsigned char J, seed = 1; // Initialise the seed
ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C is output

for(;;) // DO FOREVER
{

J = RandomNumber(255, seed); // Generate a number between 1 and 255
PORTC = J; // Send number to PORT C
Delay_Ms(500); // Wait 0.5 second

}
}

Figure 9.31 Program listing of the project

LED Based Projects 241

www.it-ebooks.info

http://www.it-ebooks.info/

the LEDs to imitate a real dice. The LEDs are turned OFF after 5 seconds to indicate that the

system is ready and the user can press the button for a new dice number.

Figure 9.32 shows the LED organisation and the corresponding dice numbers.

9.6.2 Block Diagram

The block diagram of the project is shown in Figure 9.33.

9.6.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 9.34. The START switch is

connected to bit 7 of PORT C. The 7 LED s are connected to bits RC0 to RC6 of PORT C

as follows:

Figure 9.32 Dice numbers

Figure 9.33 Block diagram of the project.

242 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

LED PORT C pin

L1 RC0

L2 RC1

L3 RC2

L4 RC3

L5 RC4

L6 RC5

L7 RC6

The microcontroller is operated from an 8 MHz crystal. Table 9.1 shows the relationship

between a dice number and the corresponding LEDs to be turned ON to show the numbers.

For example, to display number 1, we have to turn ON only the middle LED, that is L4.

Similarly, to display number 3, we have to turn on LEDs L2, L4 and L6. The last column of

Table 9.1 shows the hexadecimal number to be sent to PORT C to display a given dice num-

ber. For example, to display number 4, we have to send hexadecimal number 0� 55 to PORT

C. If using the EasyPIC 7 development board, Jumper J7 should be set to the lower position

and DIP switch SW7 for pin RC7 should be set to PULL-UP position. In this mode, the

microcontroller input pin is normally at logic HIGH. When the button is pressed, the input

pin goes to logic LOW.

Figure 9.34 Circuit diagram of the project

LED Based Projects 243

www.it-ebooks.info

http://www.it-ebooks.info/

9.6.4 Project PDL

The PDL of this project is given in Figure 9.35. As you can see from the PDL, the dice

number is created using a pseudorandom number generator, as in the previous project.

9.6.5 Project Program

The project program listing (LED10.C) is shown in Figure 9.36. PORT C bit 7 (RC7) is

configured as a digital input port and bits RC0 to RC6 are configured as output ports. An

array called DICE is created and initialised with the dice patterns corresponding to dice num-

bers. Notice that DICE[0] is not used and is set to 0. When the START button is pressed,

function RandomNumber is called to generate an integer pseudorandom number (in

variable J) between 1 and 6. The bit pattern corresponding to this number is read from array

DICE (in variable No) and sent to PORT C as a hexadecimal number in order to display the

Table 9.1 Data to be sent to PORT C for a given dice number

Required Number LEDs to be Turned On PORT C Data (Hex)

1 L4 0� 08

2 L2, L6 0� 22

3 L2, L4, L6 0� 2A

4 L1, L3, L5, L7 0� 55

5 L1, L3, L4 L5, L7 0� 5D

6 L1, L2, L3, L5, L6, L7 0� 77

Figure 9.35 PDL of the project

244 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
LED DICE

In this project 7 LEDs are connected to PORT C of a PIC18F45K22 type microcontroller.
(any other PIC microcontroller can also be used in this project) in the form of a dice.
In addition, a push-button switch is connected to bit 7 of PORT C (RC7). The
microcontroller is operated from an 8MHz crystal.

When the button (called START) is pressed, a pseudorandom number is generated
between 1 and 6 and the LEDs are lit to show this number by imitating a dice.

Author: Dogan Ibrahim
Date: October, 2011
File: LED10.C
***/
#define START PORTC.RC7

//
// This function generates a pseudorandon integer number between
// 1 and Lim. A seed is given to the generator to start with
//
unsigned char RandomNumber(int Lim, int Y)
{

unsigned char Result;
static unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return Result;

}

//
// Start of main program
//
void main()
{

unsigned char J, No, seed = 1; // Initialise the seed
unsigned char DICE[] = {0,0X08,0X22,0X2A,0X55,0X5D,0x77};
ANSELC = 0; // Configure PORT C as digital
TRISC = 0x80; // RC7 is input, RC0-RC6 are outputs

PORTC = 0; // Clear PORT C
for(;;) // DO FOREVER
{

if(START == 0) // If START button is pressed
{

J = RandomNumber(6, seed); // Generate number between 1–6
No = DICE[J]; // Hex number corresponding to

// this number
PORTC = No; // Send to PORT C
Delay_Ms(5000); // Wait 5 seconds
PORTC = 0; // Clear PORT C for the next time

}
}

Figure 9.36 Program listing of the project

LED Based Projects 245

www.it-ebooks.info

http://www.it-ebooks.info/

imitated dice number on the LEDs. The dice number is displayed for 5 seconds and then the

LEDs turn OFF to indicate that the system is ready to generate a new number.

9.6.6 Suggestions for Further Development

Some of the games (e.g. backgammon) are played with two dices. The design given in this

project can be modified by adding another set of 7 LEDs for the second dice. For example,

the first dice can be driven from PORT C, the second one from PORT D.

9.7 PROJECT 9.7 – Connecting more than one LED to a Port Pin

9.7.1 Project Description

There are some applications where we may want to connect many LEDs to a microcontroller,

but where only one LED is required to be ON at any time. One such application is the design

of a Roulette board, which requires 37 LEDs, and only one LED is ON at any time. In princi-

ple, we can use a high-end microcontroller with many I/O pins for such applications. But, as

we shall see in this project, for low-cost applications it is preferable to use a cheaper low-end

microcontroller and share the I/O pins. This approach requires less wiring and less number of

current limiting resistors, resulting in a much lower cost.

As shown in Figure 9.37, connecting two LEDs to an I/O port is very easy. One LED is

connected in current sourcing mode, while the other LED is connected in current sinking

mode. When the port pin is at logic LOW, LEDA is turned ON, when it is at logic HIGH,

LEDB is turned ON.

Figure 9.37 Connecting 2 LEDs to a port pin

246 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

It is possible to connect more than two LEDs to a port pin, where only one LED is ON at

any time. Here, we connect two LEDs between each pair of I/O pins, where the LEDs

are connected in opposite directions. Thus, with 3 I/O pins, we can have up to 6 LEDs, with

4 I/O pins we can have up to 12 LEDs, and so on. The maximum number of LEDs that can be

connected can be calculated from:

N � ðN � 1Þ ð9:1Þ

where N is the number of I/O pins used. For example, with a complete port (8 I/O pins) we

can connect up to 56 LEDs to the microcontroller. The number of current limiting resistors is

equal to the number of I/O pins used. Thus, 56 LEDs can be driven from a port with only 8

current limiting resistors.

Figure 9.38 shows the circuit where 3 I/O pins are used and up to 6 LEDs are connected to

the microcontroller. Notice that two LEDs are connected between each pair of I/O lines,

where the LEDs are connected in opposite polarities. In general, this circuit can be expanded

to any number of I/O pins and any number of LEDs.

The operation of the circuit in Figure 9.38 is explained below:

As an example, let us assume that line RC1 is disconnected. Now, to turn ON LED 4, RC0

has to be logic 1 and RC2 has to be logic 0, so that the LED is forward biased and current

flows from RC0 to RC2. You will also notice that LEDs 2 and 6 will also be forward biased.

But because these LEDs are in series, they will require a minimum of 4 V to operate (assum-

ing red LEDs): and considering the voltage drop across the current limiting resistors also,

there is not enough current to operate these LEDs and they will both be OFF. But what we

have just described will only work if line RC1 is disconnected. If RC1¼ 0, then LED 2 will

also be ON. On the other hand, if RC1¼ 1, then LED 6 will also be ON. The question is now,

how can we disconnect line RC1? The easiest way is to make line RC1 an input port. When a

port is in input mode, it is in high-impedance state so that no current flows in or out of the

port, effectively disconnecting the port pin from the circuit. It is important to notice that

when we use this technique and we have different colour LEDs, then the forward voltage

drops of each LED should be similar (e.g. we can easily mix red and green LEDs). The

reason for this can be explained by looking at Figure 9.38. If we assume that LED 4 has a

larger than normal forward voltage (e.g blue or white LED), then the voltage dropped across

LEDs 2 and 6 may just be high enough to turn them ON.

Now, based on this technique, we can turn ON each LED individually. Table 9.2 shows

what the state of each port pin should be to turn ON the LEDs in Figure 9.38. Notice here

Figure 9.38 Connecting 6 LEDs to 3 I/O pins

LED Based Projects 247

www.it-ebooks.info

http://www.it-ebooks.info/

that Z indicates that the port is in input mode. As an example, to turn ON LED 5, the required

port settings are: RC0¼ input mode, RC1¼ 0, RC2¼ 1.

We shall now create a project to control 6 LEDs connected to only 3 ports of a PIC micro-

controller. In this project, the LEDs will rotate flashing with 1 second delay between each

output.

9.7.2 Block Diagram

The block diagram of the project is shown in Figure 9.39.

9.7.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 9.40. The 6 LEDs are connected to port

pins RC0, RC1 and RC2. Notice that when an LED is ON, the current flows through two

current limiting resistors. As a result, smaller resistors are required (e.g. 150 ohm or smaller).

The LEDs are turned ON in the following sequence: 1, 2, 3, 4 5, 6, 1, 2, . . .

Table 9.2 LED control table for Figure 9.38

1 2 3 4 5 6 RC2 RC1 RC0

OFF OFF OFF OFF OFF OFF 0 0 0

ON OFF OFF OFF OFF OFF Z 1 0

OFF ON OFF OFF OFF OFF Z 0 1

OFF OFF ON OFF OFF OFF 1 Z 0

OFF OFF OFF ON OFF OFF 0 Z 1

OFF OFF OFF OFF ON OFF 1 0 Z

OFF OFF OFF OFF OFF ON 0 1 Z

OFF OFF OFF OFF OFF OFF 1 1 1

Figure 9.39 Block diagram of the project

248 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.7.4 Project PDL

The PDL of this project is given in Figure 9.41.

9.7.5 Project Program

The project program listing (LED11.C) is shown in Figure 9.42. All port pins are initially

configured as outputs and the LEDs are turned OFF. Function TURNON implements

Table 9.2 using a switch statement and turns ON a given LED. Z is defined as 1 and is used

to set a port pin into input mode. Variable j stores the LED number turned ON and takes

values between 1 and 6. This function is called by passing the number of the LED (1 to 6) to

be turned ON at any time. Passing a 0 clears, that is turns OFF all the LEDs.

9.7.6 Suggestions for Further Development

The project given in this section can be developed further, for example by designing an LED

based Roulette. This project will require 37 LEDs to be connected to the microcontroller

and, using the technique described in this section, 7 I/O pins allow up to 42 LEDs to be

connected easily with 7 current limiting resistors.

Figure 9.40 Circuit diagram of the project

LED Based Projects 249

www.it-ebooks.info

http://www.it-ebooks.info/

9.8 PROJECT 9.8 – Changing the Brightness of LEDs

9.8.1 Project Description

In some applications we may want to change the brightness of an LED. Perhaps the easiest

way to do this is to vary the current through the LED by using a potentiometer. By keeping

the supply voltage the same, we can connect a potentiometer in series with the LED and by

varying the potentiometer we effectively change the current through the LED, which in turn

changes its brightness. But in microcontroller applications, we wish to write a program and

then change the LED brightness by running the program. Before we can do this, it is worth-

while looking at the theory briefly on how we can change the power delivered to an LED.

One of the common techniques used to change the power delivered to an LED is to use a

Pulse-Width-Modulated (PWM) signal. This is basically a positive square wave signal where

the ON to OFF period can be changed by software. Let us initially consider applying a

square wave signal to the LED with equal ON and OFF periods. If the duration of these

signals are long (e.g. 1 s), then we will see the LED flashing ON and OFF. If we now

decrease the duration to say around 100 ms, we will see rapid flashing. If we continue to

decrease the duration to around 20 ms, the LED will seem to have stopped flashing and we

will see reduced brightness. This is because the LED brightness is now determined by the

average current produced by the square wave signal. Now, if we change the ON to OFF ratio

of the signal, we will see the brightness of the LED changing. This is the principle of control-

ling the power delivered to the LED using the PWM signal.

Figure 9.43 shows a typical PWM signal. The ratio of the ON period (also called MARK)

to the OFF period (also called SPACE) is known as the Duty-Cycle of the PWM signal. The

duty-cycle is quoted as a percentage and is calculated as:

D ¼ ðTon=TÞ � 100% ð9:2Þ

where D is the duty-cycle, T is the period and Ton is the ON time.

Figure 9.41 PDL of the project

250 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
MORE THAN 1 LED ON A PORT PIN
--

In this project 6 LEDs are connected to pins RC0, RC1 and RC2 of PORT C. Using only
3 pins the 6 LEDs are turned ON and OFF in a rotating fashion (see text for more
information).

The program shows how large number of LEDs can easily be connected to I/O ports.

Author: Dogan Ibrahim
Date: October, 2011
File: LED11.C
***/
#define Z 1

//
// Define LED connections to PORTT C
//
sbit RC0bit at RC0_bit;
sbit RC1bit at RC1_bit;
sbit RC2bit at RC2_bit;
//
// Define direction registers of used PORT C bits
//
sbit RC0_Direction at TRISC0_bit;
sbit RC1_Direction at TRISC1_bit;
sbit RC2_Direction at TRISC2_bit;

//
// This function sends the correct signals to turn ON the required LED. Only 1 LED
// is turned ON at any time. "0" turns OFF all LEDs. When theport direction bit is
// set to Z (= 1) then the port pin is an input pin. In this example 6 LEDs are connected
// to the microcontroller PORT C pins
//
void TURNON(unsigned char No)
{

TRISC = 0;
switch(No)
{
case 0:

RC0bit = 0; RC1bit = 0; RC2bit = 0;
break;

case 1:
RC0bit = 0; RC1bit = 1; RC2_Direction = Z;
break;

case 2:
RC0bit = 1; RC1bit = 0; RC2_Direction = Z;
break;

Figure 9.42 Program listing of the project

LED Based Projects 251

www.it-ebooks.info

http://www.it-ebooks.info/

case 3:
RC0bit = 0; RC1_Direction = Z; RC2bit = 1;
break;

case 4:
RC0bit = 1; RC1_Direction = Z; RC2bit = 0;
break;

case 5:
RC0_Direction = Z; RC1bit = 0; RC2bit = 1;
break;

case 6:
RC0_Direction = Z; RC1bit = 1; RC2bit = 0;

}
}

//
// Start of main program
//
void main()
{

unsigned char j = 1; // Initialise j
ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C as output to start with

PORTC = 0; // Clear PORT C
for(;;) // DO FOREVER
{

TURNON(j); // Turn ON LED j
Delay_Ms(1000); // Wait 1 second
j++; // Increment j
if(j == 7)j = 1; // Back to 1st LED

}
}

Figure 9.42 (Continued)

Figure 9.43 PWM signal

252 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

When the period is around 20 ms, the human eye will not see the flashes and a continuous

brightness will be seen. In this section we will assume a 20 ms (20 000 ms) period. The

required ON and OFF times for a given duty-cycle can be calculated as follows:

Ton ¼ D � T=100 ð9:3Þ

or

Ton ¼ 200D ð9:4Þ

and

Toff ¼ T � Ton ð9:5Þ

or

Toff ¼ 200 ð100 � DÞ ð9:6Þ

where Ton and Toff are in ms. Equations 9.4 and 9.6 can be used to calculate the required ON

and OFF times. For example, for a 75% duty-cycle, the required ON and OFF times are

Ton ¼ 200D ¼ 200 � 75 ¼ 15; 000 ms

Toff ¼ 200 ð100 � DÞ ¼ 200 � 25 ¼ 5; 000 ms
ð9:7Þ

As the duty-cycle is varied, the power delivered to the LED and hence the brightness of

the LED changes. We can divide the period into equal steps for simplicity and the size of a

step is known as the resolution of the PWM signal. Here, the period is 20 000ms and it is

reasonable to divide this into 20 steps, each step being 1000 ms. That is the resolution of our

signal will be 1000ms. This corresponds to 20 steps. That is, we should be able to change the

steps and see the changes in the brightness of our LED. Since we have 20 steps, each step

corresponds to a change of 5%.

There are several techniques that we can use to generate a PWM signal using a microcon-

troller. Some of the commonly used techniques are

� using delays in a program;
� using timer interrupts;
� using the built-in PWM module of the microcontroller.

Each technique will be described as a project in the following sections.

9.8.1.1 Using Delays to Generate a PWM Signal

Perhaps the easiest technique to generate a PWM signal is by using delays in a program.

Here, we can set up an endless loop and inside this loop we can send a logic HIGH from a

microcontroller port, then wait for Ton microseconds. Then, we can send a logic LOW signal

LED Based Projects 253

www.it-ebooks.info

http://www.it-ebooks.info/

from the same port and wait for Toff microseconds. This process can be repeated continu-

ously to generate a continuous PWM signal. The disadvantage of this technique is that the

microcontroller is dedicated to generating a PWM signal and it cannot do any other useful

work. In addition, the timing of the signal is not accurate.

In this project, the brightness of an LED is controlled by increasing the ON time every

second, in steps of 1 ms, from 1 to 20 ms.

9.8.2 Block Diagram

The block diagram of the project is as shown in Figure 9.3.

9.8.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 9.44, where only a single LED is

connected to port pin RC0 of the microcontroller.

9.8.4 Project PDL

The PDL of this project is given in Figure 9.44.

9.8.5 Project Program

The program is named LED12.C and the program listing of the project is shown in

Figure 9.45. The time units used in the program are milliseconds rather than microseconds,

as the Delay_us function only accepts constant numbers, not variables. In this program,

Vdelay_Ms function is used to create the require delays in milliseconds.

Figure 9.44 PDL of the project

254 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

At the beginning of the program, the ON time variable ONtime is initialised to 0. Then, an

endless loop is formed using the for statement. Inside this loop, the ON and the OFF times

are calculated in milliseconds. Logic 1 is sent to port pin RC0 and the program waits for the

duration of the ON time. Then, logic 0 is sent and the program waits for the duration of the

OFF time. The ON time is incremented by 1 ms approximately every second. After 50 itera-

tions, the elapsed time is assumed to be 1 second (20 ms� 50¼ 1000 ms, i.e. 1 s). When the

ON time reaches 20, it is reset back to 0. When the program is run, the brightness of the LED

should increase every second. After about 20 seconds, the LED will be OFF and the above

process will be repeated.

/**
CHANGE LED BRIGHTNESS
--

In this project an LED is connected to pin RC0 of aPIC microcontroller. The brightness
of the LED is increased every second in 20 steps (5% each second) by sending a PWM
waveform to the LED. i.e. the ON time is increased every second from 0ms to 20ms,
in steps of 1ms.

Author: Dogan Ibrahim
Date: October, 2011
File: LED12.C
**/
#define PWM PORTC.RC0

void main()
{

unsigned char j = 0;
unsigned char b = 0;
unsigned int ONtime, OFFtime; // Waveform ON and OFF times

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C as output to start with

for(;;) // DO FOREVER
{

ONtime = b; // PWM ON time (in ms)
OFFtime = 20 - ONtime; // PWM OFF time (in ms)
PWM = 1; // Set to 1
Vdelay_Ms(ONtime); // Delay for ON time
PWM = 0; // Set to 0
Vdelay_Ms(OFFtime); // Delay for OFF time
j++;
if(j == 50) // If one second elapsed, change brigthness
{
j = 0;
b++; // Increase ON time by 1ms
if(b > 20)b = 0;

}
}

}

Figure 9.45 Program listing of the project

LED Based Projects 255

www.it-ebooks.info

http://www.it-ebooks.info/

9.8.6 Using Timer Interrupts to Generate a PWM Signal

The advantage of using timer interrupts to generate a PWM signal is that the signal is gener-

ated in the background and the processor is free to do other tasks. Here, we will set a high-

priority timer interrupt using the TMR0 module. The processor will jump to the interrupt

service routine (ISR) every 1000ms. The PWM ON or OFF times will be stored in variables

and will be decremented inside the ISR every time an interrupt occurs. When one of the

variables reach zero, the output will be toggled. That is, 0 will change to 1, and 1 will change

to 0, and this variable will be re-loaded to its initial value. In this project, the PWM ON and

OFF times will be set to 15 000 and 5000 ms, respectively.

9.8.6.1 Block Diagram

The block diagram of the project is as shown in Figure 9.3.

9.8.6.2 Circuit Diagram

The circuit diagram of the project is as shown in Figure 9.4, where only a single LED is

connected to port pin RC0 of the microcontroller.

9.8.6.3 Project PDL

The PDL of this project is given in Figure 9.46.

Figure 9.46 PDL of the project

256 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.8.6.4 Project Program

The program is named LED13.C and the program listing of the project is given in

Figure 9.47. At the beginning of the program, the period of the PWM wave is defined as

20 000ms, and PORT C is configured as a digital output port.

The interrupt priority feature is enabled by setting IPEN¼ 1 and the timer TMR0 inter-

rupts are set to high-priority by setting TMR0IP¼ 1. The TMR0 interrupt flag is cleared by

setting TMR0IF¼ 0, the timer is set to operate in 8-bit mode and with a prescaler value of

64. As described in Chapter 2, the required timer value to generate interrupts every 1000 ms

can be calculated from:

TMR0L ¼ 256 � 1000=ð4 � Tosc � PrescalerÞ ð9:8Þ

or

TMP0L ¼ 256 � 1000=ð0:5 � 64Þ ð9:9Þ

giving TMR0L¼ 224.75, the nearest integer is selected, that is TMR0L¼ 225.

TMR0 interrupts are enabled by setting TMR0IE¼ 1. Finally, global interrupts are

enabled by setting GIEH¼ 1. The timer is now ready to generate interrupts every 1000 ms.

In the main program, the PWM On and OFF times are set to 15 000 and 5000ms, respec-

tively. The main program then enters an endless loop and waits for timer interrupts to occur.

When an interrupt occurs, the program jumps to the ISR declared as function interrupt.

Here, the first task is to re-load the timer register TMR0L. If the output is 1, the ON time is

decremented by 1000ms. When the ON time reaches 0, the output is changed to 0 and the

counter is reloaded. If, on the other hand, the output is 0, the OFF time is decremented by

1000ms. When the OFF time reaches 0, the output is changed to 1 and the counter is

reloaded. Just before exiting the ISR, further timer interrupts are re-enabled by clearing the

timer interrupt flag TMR0IF.

The PWM output waveform generated by the program in Figure 9.47 is shown in

Figure 9.48.

9.8.7 Changing the Brightness Continuously with PWM

The program given in Figure 9.47 can be modified such that the brightness of the LED can be

increased continuously, for example every second. When the LED is fully bright, it can be

turned OFF and the above process can be repeated. The new program listing (LED14.C) is

shown in Figure 9.49. Here, the main program has been changed by adding 2 seconds of

delay and then increasing the brightness every second. In Figure 9.49, only the main program

is shown, as the ISR is as before.

9.8.8 Suggestion for Further Developments

In some applications we may want to control the brightness of multiple LEDs. If all LEDs

are to have the same brightness, then we could simply make the following changes to the

program:

LED Based Projects 257

www.it-ebooks.info

http://www.it-ebooks.info/

/**
CHANGE LED BRIGHTNESS USING PWM
--

In this project an LED is connected to pin RC0 of a PIC microcontroller. A PWM wave is
generated with an ON time of 15,000us and OFF time of 5,000 us. The period of the
waveform is 20,000us.

Timer TMR0 interrupts are used to generate the PWM wave. The timer interrupts every
1,000us and two counters are used to determine what the output should be: PWMOn
and PWMoff. These counters store the ON and OFF times in microseconds. They are
decremented by 1,000 every time a timer interrupt occurs. When a counter reached zero,
the output is toggled and the counter is re-loaded.

Timer TMR0 is operated in the following mode:

Mode: 8-bit
Interrupt: High-priority
Prescaler: 64
TMR0 Count: 225

Author: Dogan Ibrahim
Date: October, 2011
File: LED13.C
**/
#define PWM PORTC.RC0

unsigned int ONtime, OFFtime, PWMon, PWMoff;

//
// This is the Interrupt Service Routine (ISR). The program jumps to
// this routine every 1,000us.
//
void interrupt(void)
{

TMR0L = 225; // Re-load TMR0L

if(PWM == 1) // If output is 1
{

PWMon = PWMon-1000; // Decrement ON time
if(PWMon <= 0) // IF end of ON time
{
PWM = 0; // Set output to 0
PWMon = ONtime; // Reload counter

}
}
else
{ // If output is 0
PWMoff = PWMoff-1000; // Decrement OFF time
if(PWMoff <= 0) // IF end of OFF time
{

Figure 9.47 Program listing of the project

258 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Change #define PWM PORTC.RC0 to #define PWM PORTC

Change if(PWM == 1) to if(PWM == 0xFF)

Change PWM = 1 to PWM = 0xFF

If, on the other hand, we want to control the brightness of each LED independently, then

we could extend the ISR by creating independent counters for each LED and then sending a

1 or 0 to each LED whenever its counter becomes 0.

PWM = 1; // Set output to 1
PWMoff = OFFtime; // Reload OFF time

}
}

TMR0IF_bit = 0; // Clear TMR0 interrupt flag
}

//
// Main program
//
void main()
{

unsigned intPeriod = 20000; // Period in microseconds

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C as output

//
// Configure TMR0 to generate interrupts at every 1000us
//

IPEN_bit = 1; // Enable priority based interrupts
TMR0IP_bit = 1; // TMR0 in high priority
TMR0IF_bit = 0; // Clear TMR0 interrupt flag
TMR0L = 225; // Load TMR0L
T0CON = 0b11000101; // TMR0 in 8 bit mode, prescaler=64
TMR0IE_bit = 1; // Enable TMR0 interrupts
PWM = 0; // Output 0 to start with
GIEH_bit = 1; // Enable high priority interrupts

ONtime = 15000;
OFFtime = Period - ONtime;
PWMon = ONtime;
PWMoff = OFFtime;

for(;;) // Wait for interrupts
{

}

}

Figure 9.47 (Continued)

LED Based Projects 259

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9.48 Generated PWM waveform

void main()
{

unsigned int Period = 20000; // Period in microseconds

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C as output

//
// Configure TMR0 to generate interrupts at every 1000us
//

IPEN_bit = 1; // Enable priority based interrupts
TMR0IP_bit = 1; // TMR0 in high priority
TMR0IF_bit = 0; // Clear TMR0 interrupt flag
TMR0L = 225; // Load TMR0L
T0CON = 0b11000101; // TMR0 in 8 bit mode, presasler=64
TMR0IE_bit = 1; // Enable TMR0 interrupts
PWM = 0;
GIEH_bit = 1; // Enable high priority interrupts

ONtime = 1000;
OFFtime = Period - ONtime;
PWMon = ONtime;
PWMoff = OFFtime;

for(;;)
{
Delay_Ms(2000);
Ontime = ONtime + 1000; // Increase brightness
if(ONtime == 20000) ONtime = 1000;

}

}

Figure 9.49 Modified program to change the brightness

260 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

9.8.9 Using the Built-in Microcontroller PWM Module

The PIC18 microcontroller family has built-in PWM modules (see Chapter 2) that can be

used to generate PWM waveforms. PWM module makes use of ports CCP1, CCP2, CCP3,

and so on, of the microcontroller. But unfortunately this module cannot be used to generate

PWM signals with large periods such as 20 ms. In this project we shall be using the CCP1 pin

and connect an LED to this pin via a current limiting resistor and we will generate a PWM

signal with a period of 2000ms, ON time (duty cycle) of 500 ms, and OFF time of 1500ms.

The advantage of using the PWM module is that, like the interrupts, the waveform is gener-

ated in the background and the processor is free to do other tasks while the PWM signal is

being generated.

9.8.9.1 Block Diagram

The block diagram of the project is as shown in Figure 9.3.

9.8.9.2 Circuit Diagram

The circuit diagram of the project is as shown in Figure 9.4, except that the LED is connected

to port pin CCP1 (pin RC2 in PIC18F45K22 microcontroller) via a current limiting resistor.

9.8.9.3 Project PDL

The PDL of this project is given in Figure 9.50.

9.8.9.4 Project Program

The program is named LED15.C and the program listing of the project is shown in

Figure 9.51.

As described in Chapter 2, the value to be loaded into Timer 2 register can be calculated as

PR2 ¼ PWM period

TMR2PS � 4 � Tosc� 1 ð9:10Þ

where

PR2 is the value to be loaded into Timer 2 register;

TMR2PS is the Timer 2 prescaler value;

Tosc is the clock oscillator period (in seconds).

Figure 9.50 PDL of the project

LED Based Projects 261

www.it-ebooks.info

http://www.it-ebooks.info/

Substituting the values into the equation, and assuming a prescaler of 16, an oscillator

frequency of 8 MHz (Tosc¼ 0.125ms), the PWM period of 2000ms, and duty cycle

(ON time) of 500ms, we get

PR2 ¼ 2 � 10�3

16 � 4 � 0:125 � 10�6
� 1 ð9:11Þ

which gives PR2¼ 249

The 10-bit value to be loaded into PWM registers are given by (see Chapter 2)

CCPR1L : CCP1CON < 5 : 4 >¼ PWM duty cycle

TMR2PS � Tosc ð9:12Þ

where the upper 8 bits will be loaded into register CCPR1L and the two LSB bits will be

loaded into bits 4 and 5 of CCP1CON.

/***
CHANGE LED BRIGHTNESS USING THE PWM MODULE

In this project an LED is connected to pin CCP1 of a PIC18F45K22 microcontroller.
A PWM wave is generated with an ON time of 500us and OFF time of 1,5000us.
The period of the waveform is 2,000us. The microcontroller is operated from an
8MHz crystal

Author: Dogan Ibrahim
Date: November, 2011
File: LED15.C
***/

void main()
{

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C as output

T2CON = 0b00000110; // Timer 2 with prescaler 16
PR2 = 249; // Load PR2 register of Timer 2
CCPTMRS0 = 0; // Enable PWM
CCPR1L = 0X3E; // Load duty cycle
CCP1CON = 0x2C; // Load duty cycle and enable PWM

for(;;) // Wait here forever
{
}

}

Figure 9.51 Program listing using the PWM module

262 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

or

CCPR1L : CCP1CON < 5 : 4 >¼ 500 � 10�6

16 � 0:125 � 10�6
ð9:13Þ

which gives 250. This number in 10-bit binary is ‘00111110 10’. Therefore, the value to be

loaded into bits 4 and 5 of CCP1CON are the two LSB bits. that is ‘10’. Bits 2 and 3 of

CCP1CON must be set to HIGH for PWM operation, and bits 6 and 7 are not used. There-

fore, CCP1CON must be set to (‘X’ is don’t care):

XX101100 i.e. hexadecimal 0x2C

The number to be loaded into CCPR1L is the upper 8 bits (of 250), that is ‘00111110’, that

is hexadecimal 0� 3E.

At the beginning of the program, PORT C is configured as digital output port. Then, Timer

2 is configured and timer register PR2 is loaded to give the required period. PWM registers

CCPR1L and CCP1CON are loaded with the duty cycle (ON time) and the PWM module is

enabled. The main program then waits forever, where the PWM works in the background to

generate the required waveform.

9.8.10 Changing the LED Brightness using the PWM Module

The program given in Figure 9.51 generates a single PWM waveform to reduce the bright-

ness of an LED. In this section we will modify the program, such that the LED brightness

changes continuously, for example every second.

In reference to the duty cycle formula, we can write the duty cycle as:

PWM duty cycle ¼ TMR2PS � Tosc � ðCCPR1L : CCP1CON < 5 : 4 >Þ

or

PWM duty cycle ¼ 16 � 0:125 � ðCCPR1L : CCP1CON < 5 : 4 >Þ

giving

PWM duty cycle ¼ 2 � ðCCPR1L : CCP1CON < 5 : 4 >Þ inms

Now, by loading different values into the register pair CCPR1L and CCP1CON, we can

obtain different duty cycles and hence different LED brightness. Remembering that the

period of our PWM wave is 2000 ms, we can load values from 0 to 1000 into the register pair

to correspond with no brightness to full brightness. Let us assume that we wish to change the

brightness in 10 steps. Then, we could increase the value loaded into these registers by 100

every second, so that the duty cycle changes by 200 ms. What we will see is that the bright-

ness of the LED will change from 0 to full brightness in 10 seconds, in steps of 10 levels.

Figure 9.52 shows the modified program (LED16.C). Here, variable k is used to increment

the 10-bit value of the register pair by 100, that is the duty cycle is incremented by 200 ms.

Variable k is shifted right by 2 bits and the upper 8 bits of the 10-bit duty cycle is loaded into

LED Based Projects 263

www.it-ebooks.info

http://www.it-ebooks.info/

register CCPR1L. Then, the two LSB bits of the duty cycle are extracted and ORed with

register CCP1CON to enable the PWM and also to provide the 2 LSB bits of the duty cycle.

9.9 PROJECT 9.9 – LED Candle

9.9.1 Project Description

In this project we design an LED candle – an LED that imitates a burning real candle. The

operation of the project is such that a PWM waveform is sent to the LED with random duty

/***
CHANGE LED BRIGHTNESS USING PWM

In this project an LED is connected to pin CCP1 of a PIC18F45K22 microcontroller. A PWM
wave is generated with a period of 2,000us and variable duty cycle, using the PWM module
of the microcontroller. The duty cycle is varied from 0us to 2000us (i.e. full brightness). The
duty cycle is 10-bit variable stored in k. The upper 8-bits are copied into CCPR1L and the two
LSB bits are copied to bits 4 and 5 of CCP1CON

The microcontroller is operated with an 8MHz crystal.

Author: Dogan Ibrahim
Date: November, 2011
File: LED16.C
***/

void main()
{

unsigned int j, k = 0;

ANSELC = 0; // Configure PORT C as digital
TRISC = 0; // PORT C as output

T2CON = 0b00000110; // Timer 2 with prescaler 16
PR2 = 249; // Load PR2
CCPTMRS0 = 0;

for(;;) // DO FOREVER
{
Delay_Ms(1000); // Wait 1 second
k = k + 100; // Increment k
if(k > 1000)k = 0; // If end of duty cycle
CCPR1L = k >> 2; // Load CCPR1L with upper 8 bits
J = k & 0x03; // Get two LSB bits
J = j << 4; // Move to bit positions 4 and 5
CCP1CON = 0x0C | j; // Load CCP1CON bits 4 and 5

}

}

Figure 9.52 Modified program

264 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

cycle. Because of this randomness, the LED lights up and flickers such that it looks as if it is

a real candle.

9.9.2 Block Diagram

The block diagram of the project is as shown in Figure 9.3.

9.9.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 9.4, except that the LED is

connected to port pin CCP1 (pin RC2 in PIC18F45K22 microcontroller) via a current

limiting resistor.

9.9.4 Project PDL

The PDL of this project is given in Figure 9.53.

9.9.5 Project Program

The program is named LED17.C and the program listing of the project is shown in

Figure 9.54. At the beginning of the main program, PORT C has been configured as digital

output and Timer 2 and PWM modules have been configured to generate a PWM waveform

on pin CCP1 (RC2) with a period of 2000 ms. A pseudorandom number generator function

has been created.

Figure 9.53 PDL of the project

LED Based Projects 265

www.it-ebooks.info

http://www.it-ebooks.info/

/**
LED CANDLE

In this project an LED is connected to pin CCP1 of a PIC18F45K22 microcontroller. This
project imitates a real burning candle. A random Number is generated using a
pseudorandom Number generator. This Number is used to change the duty cycle of the
generated PWM waveform, thus giving the look of a real flickering burning candle.

Author: Dogan Ibrahim
Date: November, 2011
File: LED17.C
**/
//
// Pseudo random number generator function
//
unsigned int Number(int Lim, int Y)
{
unsigned int Result;
static unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return result;
}

//
// Main program
//
void main()
{

unsigned int j,k = 0;
unsigned char seed = 1;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // PORT C as output

T2CON = 0b00000110; // Timer 2 with prescaler 16
PR2 = 249; // Load PR2
CCPTMRS0 = 0;

for(;;) // DO FOREVER
{
Delay_Ms(500); // 500ms delay
k = Number(1000, seed); // Get a random Number 1 to 1000
if(k < 50)k = 50; // If less than 50, make it 50
CCPR1L = k >> 2; // Load upper byte into CCPR1L
j = k & 0x03; // Get two LSB bits
j = j << 4; // Move to bit positions 4 and 5
CCP1CON = 0x0C | j; // Load CCP1CON

}
}

Figure 9.54 Program listing of the project

266 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The program operates in an endless loop created with a for statement. Inside this loop,

a small delay is added between each iteration to slow down the rate of brightness changes.

The random number generator function is called to generate a number between 1 and 1000,

which corresponds to duty cycles between 2 and 2000 ms (see earlier project). This number

is stored in variable k. In order to make sure that the LED does not turn OFF (i.e. the candle

does not extinguish), the minimum value of k is set to 50, corresponding to a minimum duty

cycle of 100 ms. PWM registers CCPR1L and CCP1CON are then loaded, as in the earlier

project. The parameters given in this project can be adjusted to change the look and the flick-

ering action of the LED as desired.

9.10 Summary

This chapter has given the design of LED based project using the PIC microcontrollers. All

the projects given in the chapter have been tested and are fully working. The full circuit

diagram and the source code are given for all the projects.

Exercises

9.1 An LED is connected to port pin RC0 of a PIC microcontroller. Write a program to

flash the LED at a rate of 200 ms.

9.2 8 LEDs are connected to PORT C of a PIC microcontroller. Write a program to flash

the odd numbered LEDs (at bit positions 1, 3, 5 and 7).

9.3 8 LEDs are connected to PORT C of a PIC microcontroller. In addition, a push-button

switch is connected to port pin RB0. Write a program to turn ON the odd numbered

LEDs (at bit positions 1, 3, 5 and 7) when the button is pressed and the even numbered

LEDs (at bit positions 0, 2, 4 and 6) if the button is not pressed.

9.4 Design a microcontroller based two dice system. Assume that the dices are connected

to PORT B and PORT C of the microcontroller. In addition, a push-button switch is

connected to port pin RA0. When the button is pressed, two random dice numbers

should be generated and the LEDs should indicate these dice numbers appropriately.

The LEDs should remain on for 5 seconds and should then all go OFF to indicate that

the system is ready to generate new dice numbers.

9.5 It is required to design an LED based Roulette game with 37 LEDs. Design the circuit

diagram of the game. Describe how the LEDs can be controlled using only 7 I/O port

pins.

9.6 Explain how the brightness of an LED can be changed by using a PWM signal to

drive it.

9.7 Explain how the PWM module of a PIC microcontroller operates. Write a program to

generate a PWM signal with an equal MARK to SPACE ratio, having a period of

1500 ms.

LED Based Projects 267

www.it-ebooks.info

http://www.it-ebooks.info/

10

7-Segment LED Display
Based Projects

In this chapter we will look at the design of projects using 7-segment display devices. Ini-

tially, a simple 1-digit project is given to familiarise the reader with the interfacing and use

of 7-segment displays. Then, the use of multiplexed 2-digit and 4-digit 7-segment display

projects are given for more useful and practical applications.

10.1 PROJECT 10.1 – Single Digit Up Counting 7-Segment LED
Display

10.1.1 Project Description

This is perhaps the simplest 7-segment LED project we can have. In this project, a 7-segment

LED display is connected to PORT D of a PIC microcontroller. The LED counts up from 0 to

9 and then back to 0 continuously, with a 1 second delay between each count.

10.1.2 Block Diagram

The block diagram of the project is shown in Figure 10.1.

10.1.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 10.2. A common-cathode type display

is used in this project (see Chapter 5), where the cathode is connected to ground and a

segment is turned ON by setting it to logic HIGH. The segments are driven using current

limiting resistors. In this project, a PIC18F45K22 type microcontroller is used, but any other

model with at least 7 I/O ports can also be used. An 8 MHz crystal is used to provide the

clock signals. The microcontroller is Reset using an external push-button.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

10.1.4 Project PDL

The PDL of this project is very simple and is given in Figure 10.3.

10.1.5 Project Program

The program is named SEG1.C and the program listing of the project is given in Figure 10.4.

At the beginning of the project, counter variable Cnt is initialised to zero. Also, the segment

Figure 10.1 Block diagram of the project

Figure 10.2 Circuit diagram of the project

270 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

patterns (see Table 5.3) for numbers 0 to 9 are stored in array SevenSegment. PORT D is con-

figured as a digital I/O port by clearing register ANSELD (different PIC microcontrollers may

require different settings). An endless loop is formed using a for statement. Inside this loop

array, SevenSegment is indexed using the Cnt value. The corresponding bit pattern is stored in

variable Disp and is then sent to PORT D to display the number in Cnt. Variable Cnt is incre-

mented by one, a 1-second delay is introduced into the loop and the loop is repeated.

If you are using the EasyPIC 7 development board, then make sure you set to ON posi-

tion switch SW4.1 (i.e. DIS0), to enable the rightmost digit of the 7-segment LED on the

board. In addition, you will have to include the following statements before the for loop in

Figure 10.4, to enable the display digit, by connecting the transistor connected to the com-

mon cathode pin. Notice that this transistor is connected to pin RA0 of the microcontroller

(see Figure 10.5).

ANSELA=0; // Configure PORT A as digital

TRISA=0; // Set PORT A pins as output

PORTA.F0=1; // Enable common cathode of rightmost digit

10.1.6 Suggestions for Further Development

The program given in Figure 10.4 can be made more readable if the display part of the pro-

gram can be combined in a function. Figure 10.6 shows the modified program (SEG2.C).

Function Display_Segment receives a number between 0 and 9 and returns the bit pattern

corresponding to this number. The main program then sends this bit pattern to PORT D to

display the number on the 7-segment LED.

10.2 PROJECT 10.2 – Display a Number on 2-Digit 7-Segment LED
Display

10.2.1 Project Description

This project shows how more than one 7-segment display can be multiplexed. In this project,

we will display number 45 on a 2-digit display as an example.

BEGIN
Initialise Count to 0
Store segment display data in an array (Table 5.3)
Configure PORT D as digital and output
DO FOREVER

Get pattern corresponding to Count
Send pattern to PORT D
Increment Count
IF Count is 10, reset to 0
Wait 1 second

ENDDO
END

Figure 10.3 PDL of the project

7-Segment LED Display Based Projects 271

www.it-ebooks.info

http://www.it-ebooks.info/

/**
1-DIGIT 7-SEGMENT LED COUNTER
=============================

In this project a common cathode 7-segmentdisplay is connected to PORT D of a
PIC18F45K22 type microcontroller (other types can also be used). The microcontroller
is operated from an 8MHz crystal.

The display counts from 0 to 9 and then back to 0 continuously with one second delay
between each count.

The connection between PORT D and the LED segments are as follows:

LED segment PORT D
a RD0
b RD1
c RD2
d RD3
e RD4
f RD5
g RD6

Author: Dogan Ibrahim
Date: November, 2011
File: SEG1.C
**/

void main()
{

unsigned char Disp, Cnt = 0;
unsigned char SevenSegment[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,

0x07,0x7F,0x6F};

ANSELD = 0; // Configure PORT D as digital
TRISD = 0; // PORT D pins are outputs

for(;;) // DO FOREVER
{

Disp = SevenSegment[Cnt]; // Get bits of number to be displayed
PORTD = Disp; // Display number
Cnt++; // Incremet count
if(Cnt == 10)Cnt = 0; // Back to zero
Delay_Ms(1000); // Wait 1 second

}
}

Figure 10.4 Program listing of the project

272 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

10.2.2 Block Diagram

The block diagram of the project is shown in Figure 10.7.

10.2.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 10.8. The displays are connected in

parallel to PORT D of the microcontroller. Each digit is enabled separately by connecting a

transistor as a switch to its common cathode pin. Setting the base of the transistor to logic

HIGH turns the transistor ON and enables the corresponding display digit. PORT A pins

RA0 and RA1 are used to control the display enable lines. With multiplexed displays, each

display is enabled for several milliseconds and the human eye thinks that all the LEDs are

ON at all times. As an example, a two digit 7-segment display is operated as follows:

� send digit 1 number to PORT D;
� enable digit 1;
� wait for a few milliseconds;
� disable digit 1;
� send digit 2 number to PORT D;
� enable digit 2;
� wait for a few milliseconds;
� disable digit 2;
� repeat above steps forever.

Figure 10.5 7-Segment LED connection on the Easy PIC 7 development board

7-Segment LED Display Based Projects 273

www.it-ebooks.info

http://www.it-ebooks.info/

/***
1-DIGIT 7-SEGMENT LED COUNTER
=============================

In this project a common cathode 7-segment display is connected to PORT D of a
PIC18F45K22 type microcontroller (other types can also be used). The microcontroller is
operated from an 8MHz crystal.

The display counts from 0 to 9 and then back to 0 continuously with one second delay
between each count.

The connection between PORT D and the LED segments are as follows:

LED segment PORT D
a RD0
b RD1
c RD2
d RD3
e RD4
f RD5
g RD6

This program uses a function to get the bit pattern for a given number. This bit pattern is
returned to the calling program.

Author: Dogan Ibrahim
Date: November, 2011
File: SEG2.C
***/

//
// this function forms the bit pattern corresponding to a number between 0 and 9. This
// bit pattern is returned to the calling program
//
unsigned char Display_Segment(unsigned char Number)
{

unsigned char SevenSegment[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,
0x07,0x7F,0x6F};

unsigned char Disp;

Disp = SevenSegment[Number]; // Get bits of the number to be displayed
return (Disp); // Return bits to main program

}

//
// Start of main program
//
void main()
{

Figure 10.6 Modified program

274 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

unsigned char Cnt = 0;

ANSELD = 0; // Configure PORT D as digital
TRISD = 0; // PORT D pins are outputs

for(;;) // DO FOREVER
{

PORTD = Display_Segment(Cnt); // Display number
Cnt++; // Increment count
if(Cnt== 10)Cnt = 0; // Back to zero
Delay_Ms(1000); // Wait 1 second

}
}

Figure 10.6 (Continued)

Figure 10.7 Block diagram of the project

Figure 10.8 Circuit diagram of the project

7-Segment LED Display Based Projects 275

www.it-ebooks.info

http://www.it-ebooks.info/

If you are using the EasyPIC 7 development board, then make sure you set to ON position

switches SW4.1 (i.e. DIS0) and SW4.2 (i.e. DIS1), to enable the rightmost two digits of the

7-segment LEDs on the board.

10.2.4 Project PDL

The PDL of the project is given in Figure 10.9.

10.2.5 Project Program

The program is named SEG3.C and the program listing of the project is given in Fig-

ure 10.10. The 7-segment display function Display_Segment is also used in this pro-

gram. At the beginning of the program, display enable signals RA0 and RA1 are

assigned to symbols Digit1_Enable and Digit2_Enable, respectively. The number to be

displayed (45) is stored in variable Num. PORT D and PORT Apins are configured as

digital and output. Both display digits are disabled to start with. The program then

enters an endless loop using the for statement. Inside this loop, the two digits of the

number are extracted and stored in variables Digit1_Data and Digit2_Data. First,

the bit pattern corresponding to Digit1_Data is obtained by calling function Display_

Segment and this bit pattern is sent to PORT D to display number 5 on Digit 1. Digit

1 is enabled by sending logic 1 voltage to the base of the transistor connected to RA0.

BEGIN
Initialise variable Num to 45
Configure PORT A and PORT D as digital output
Disable both digits
DO FOREVER

Extract Digit 2 and Digit 1 data
CALL Display_Segment to display 5
Enable Digit 1
Wait 5ms
Disable Digit 1
CALL Display_Segment to display 4
Enable Digit 2
Wait 5ms
Disable Digit

ENDDO
END

BEGIN/Display_Segment
Create the 7-segment coding table
Return bit pattern corresponding to the number

END/Display_Segment

Figure 10.9 PDL of the project

276 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/**
2-DIGIT 7-SEGMENT DISPLAY
=======================

In this project a 2-digit common cathode 7-segment display is connected to PORT D of a
PIC18F45K22 type microcontroller (other types can also be used). The microcontroller is
operated from an 8MHz crystal. The displays are multiplexed where the a-g segment
lines are in parallel, but the common cathode pin (enable) of each display is controlled
separately

Number 45 is displayed on the 2-digit display as an example.

The connection between PORT D and the LED segments are as follows:

LED segment PORT D
a RD0
b RD1
c RD2
d RD3
e RD4
f RD5
g RD6

Digit 1 (right hand side) is controlled from port RA0 through a transistor switch, and
Digit 2 (left hand side) is from port RA1.

This program uses a function to get the bit pattern for a given number. This bit pattern
is returned to the calling program.

Author: Dogan Ibrahim
Date: November, 2011
File: SEG3.C
**/
#define Digit1_Enable RA0_bit
#define Digit2_Enable RA1_bit

//
// this function forms the bit pattern corresponding to a number between
// 0 and 9. this bit pattern is returned to the calling program
//
unsigned char Display_Segment(unsigned char Number)
{

unsigned char SevenSegment[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,
0x07,0x7F,0x6F};

unsigned char Disp;

Disp = SevenSegment[Number]; // Get bits of the number to be displayed
return (Disp); // Return bits tomain program

}

Figure 10.10 Program listing of the project

7-Segment LED Display Based Projects 277

www.it-ebooks.info

http://www.it-ebooks.info/

After a 5 ms delay, the number corresponding to Digit 2 is obtained and sent to PORT

D. Digit 2 is enabled by setting RA1 to logic 1, and after a 5 ms delay, the digit is

disabled. The above process is repeated forever, with a 5 ms delay after displaying

each digit. The person looking at the digits thinks that both digits are ON at all times

while number 45 is displayed.

It is important to realise that in Figure 10.10 the program is busy continuously refreshing

the displays and the processor is not free to carry out any other tasks. We shall see in the next

example how the display refreshing action can be implemented in a timer interrupt service

routine so that the processor becomes free to do other tasks.

10.3 PROJECT 10.3 – Display Lottery Numbers on 2-Digit 7-Segment
LED Display

10.3.1 Project Description

In this project, a 2-digit 7-segment display is connected to PORT D of the microcontroller.

The project displays 7 random lottery numbers between 1 and 49 with a 5-second interval

between each number. The last number displayed is considered to be the ‘bonus’. A push-

//
// Start of main program
//
void main()
{

unsigned char Num = 45;
unsigned char Digit1_Data,Digit2_Data;

ANSELD = 0; // Configure PORT D as digital
ANSELA = 0; // Configure PORT A as digital
TRISD = 0; // PORT D pins are outputs
TRISA = 0; // PORT A output
Digit1_Enable = 0; // Disable Digit 1 to start with
Digit2_Enable = 0; // Disable Digit 2 to start with

for(;;) // DO FOREVER
{

Digit2_Data = Num / 10; // Extract Digit 2 data
Digit1_Data = Num % 10; // Extract Digit 1 data

PORTD = Display_Segment(Digit1_Data); // Send LSD number (5) to port
Digit1_Enable = 1; // Enable Digit 1
Delay_Ms(5); // Wait 5ms
Digit1_Enable = 0; // Disable Digit 1
PORTD = Display_Segment(Digit2_Data); // Send MSD data (4) to port
Digit2_Enable = 1; // Enable Digit 2
Delay_Ms(5); // Wait 5ms
Digit2_Enable = 0; // Disable Digit 2

}
}

Figure 10.10 (Continued)

278 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

button switch is used to start the game. At the end of displaying all the 7 numbers, the display

goes blank to indicate that the circuit is ready to start a new game.

In this project, the displays are refreshed inside a timer interrupt service routine in the

background, so that the processor is free to do other tasks.

10.3.2 Block Diagram

The block diagram of the project is shown in Figure 10.11. The 2-digit display pins a–g are

connected in parallel and each digit is controlled separately. The push-button switch STRT

starts the game.

10.3.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 10.12. The displays are connected in

parallel to PORT D of the microcontroller. Each digit is enabled separately by connecting a

transistor as a switch to its common cathode pin, as in the earlier project. Setting the base of

the transistor to logic HIGH turns the transistor ON and enables the display. PORT A pins

RA0 and RA1 are used to control the display enable lines. The STRT push-button switch is

connected to pin RA2 of the microcontroller.

If you are using the EasyPIC 7 development board, then make sure you set to ON position

switches SW4.1 (i.e. DIS0) and SW4.2 (i.e. DIS1), to enable the rightmost two digits of the

7-segment LED on the board.

10.3.4 Project PDL

The PDL of the project is given in Figure 10.13. The timer TMR0 is set to interrupt

every 5 ms.

The interrupt priority feature is enabled by setting IPEN ¼ 1 and the timer TMR0 inter-

rupts are set to high-priority by setting TMR0IP ¼ 1. The TMR0 interrupt flag is cleared

by setting TMR0IF ¼ 0, and the timer is set to operate in 8-bit mode, with a prescaler value

of 64. As described in Chapter 2, the required timer value to generate interrupts every 5 ms

(5000 ms) can be calculated from

TMR0L ¼ 256 � 5000=ð4 � Tosc � PrescalerÞ ð10:1Þ

Figure 10.11 Block diagram of the project

7-Segment LED Display Based Projects 279

www.it-ebooks.info

http://www.it-ebooks.info/

or

TMR0L ¼ 256 � 5000=ð0:5 � 64Þ ð10:2Þ

giving TMR0L ¼ 99.75; the nearest integer is selected, that is TMR0L ¼ 100.

TMR0 interrupts are enabled by setting TMR0IE ¼ 1. Finally, global interrupts are

enabled by setting GIEH ¼ 1. The timer is now ready to generate interrupts every 5 ms.

10.3.5 Project Program

The program is named SEG4.C and the program listing of the project is given in Figure

10.14. At the beginning of the main program, Digit1_Enable, Digit2_Enable and STRT

symbols are defined as bits RA0, RA1 and RA2 of PORT A, respectively. PORT D and

PORT A are configured as digital I/O, PORT D pins, and RA0, RA1 of PORT A are con-

figured as outputs, while RA2 is configure as input.

The two digits are disabled by clearing Digit1_Enable and Digit2_Enable to start with, so

that the displays are blank at the beginning of the program.

The program then configures TMR0 to generate interrupts every 5 ms. IPEN is set to 1 to

enable priority based interrupts, and TMR0 is set to high priority by setting TMR0IP bit to 1.

TMR0 is configured to operate as an 8-bit timer with a prescaler of 64 and TMR0L is loaded

with 100 in order to overflow at 5 ms intervals. TMR0 interrupts are enabled by setting bit

TMR0IE bit. Global interrupts are not enabled (GIEH ¼ 0) at this point in the program.

Figure 10.12 Circuit diagram of the project

280 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The program then waits until the STRT button is pressed. Normally this input pin is at

logic 1 and pressing the button forces the RA2 pin to go to logic 0. When the button is

pressed, the program clears all entries of an array called Same. This array is used to deter-

mine if duplicate numbers are generated and, if so, a new random number is generated.

BEGIN
Configure PORT a and PORT D
Disable display digits
Configure TMR0 for 5ms interrupts
Disable interrupts

Next-game:
Wait for STRT button to be pressed
DO FOREVER

CALL Number to get a random number between 1 and 49
Check for no duplicates
Enable interrupts
Wait 5 seconds
IF 7 numbers displayed THEN

Disable interrupts
Disable display digits
GOTO Next-game

ENDIF
ENDDO

END

BEGIN/NUMBER
Generate a random number
Return the number to the caller

END/NUMBER

BEGIN/DISPLAY_SEGMENT
Load bit patterns for numbers 0 to 9 to an array
Get the bit pattern of the required number
Return the bit pattern to the caller

END/DISPLAY_SEGMENT

BEGIN/INTERRUPT
Re-load timer register
Extract digits of the number to be displayed
IF Digit 1 is disabled THEN

Disable Digit 2
Send bit pattern to display Digit 1 data
Enable Digit 1

ELSE
Disable Digit 1
Supress leading zero
Send bit pattern to display Digit 2 data
Enable digit 2

ENDIF
Enable timer interrupt flag

END/INTERRUPT

Figure 10.13 PDL of the project

7-Segment LED Display Based Projects 281

www.it-ebooks.info

http://www.it-ebooks.info/

/***
2-DIGIT 7-SEGMENT DISPLAY LOTTERY NUMBER GENERATOR
==

In this project a 2-digit common cathode 7-segment display is connected to PORT D of a
PIC18F45K22 type microcontroller (other types can also be used). The microcontroller is
operated from an 8MHz crystal. The displays are multiplexed where the a-g segment lines
are in parallel, but the common cathode pin (enable) of each display is controlled separately

The project displays the lottery numbers. A pseudorandom Number generator is used to
generate numbers between 1 and 49. 7 numbers are displayed with 5 second interval
between each Number. At the end the display goes blank to indicate that a new set of
7 numbers can be generated.

The game starts when the STRT button, connected to port RA2 is pressed.

The program uses timer interrupts evey 5ms to refresh the 7-segment displays.

The connection between PORT D and the LED segments are as follows:

LED segment PORT D
a RD0
b RD1
c RD2
d RD3
e RD4
f RD5
g RD6

Digit 1 (right hand side) is controlled from port RA0 through a transistor switch, and
Digit 2 (left hand side) is from port RA1. The STRT button is connected to pin RA2.
Normally this pin is at logic 1 and goes to logic 0 when the button is pressed.

This program uses a function to get the bit pattern for a given number. This bit pattern
is returned to the calling program.

Author: Dogan Ibrahim
Date: November, 2011
File: SEG4.C
**/
#define Digit1_Enable RA0_bit
#define Digit2_Enable RA1_bit
#define STRT RA2_bit

unsigned char seed = 1;
unsigned char Num;

//
// this function forms the bit pattern corresponding to a number between 0 and 9.
// This bit pattern is returned to the calling program
//

Figure 10.14 Program listing of the project

282 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

unsigned char Display_Segment(unsigned char Number)
{

unsigned char SevenSegment[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,
0x07,0x7F,0x6F};

unsigned char Disp;

Disp = SevenSegment[Number]; // Get bits of the number to be displayed
return (Disp); // Return bits tomain program

}

//
// Pseudo random number generator function
//
unsigned char Number(int Lim, int Y)
{
unsigned char Result;
static unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return Result;

}

// This is the Interrupt Service Routine (ISR). The program jumps to this routine every
// 1ms. Here, the display data is sent to the displays and the displays are refreshed
//
void interrupt(void)
{

unsigned char Digit1_Data,Digit2_Data;

TMR0L = 100; // re-load TmR0L
Digit2_Data = Num / 10; // Extract Digit 2 data
Digit1_Data = Num % 10; // Extract Digit 1 data
if(Digit1_Enable == 0) // If Digit 1 is not enabled already
{

Digit2_Enable = 0;
PORTD = Display_Segment(Digit1_Data); // Send LSD number (5) to port
Digit1_Enable = 1; // Enable Digit 1

}
else
{

Digit1_Enable = 0;
if(Digit2_Data != 0) // Supress leading 0
{

PORTD = Display_Segment(Digit2_Data); // Send MSD data (4) to port
Digit2_Enable = 1; // Enable Digit 2

}
}
TMR0IF_bit = 0; // Clear TMR0 interrupt flag

Figure 10.14 (Continued)

7-Segment LED Display Based Projects 283

www.it-ebooks.info

http://www.it-ebooks.info/

}

//
// Start of main program
//
void main()
{

unsigned char Digit1_Data,Digit2_Data,Cnt,m,Flag,k;
unsigned char Same[7];

ANSELD = 0; // Configure PORT D as digital
ANSELA = 0; // Configure PORT A as digital
TRISD = 0; // PORT D pins are outputs
TRISA = 0x04; // RA0,RA1 input, RA2 output
Digit1_Enable = 0; // Disable Digit 1 to start with
Digit2_Enable = 0; // Disable Digit 2 to start with

//
// Configure TMR0 to generate interrupts at every 5ms
//

IPEN_bit = 1; // Enable priority based interrupts
TMR0IP_bit = 1; // TMR0 in high priority
TMR0IF_bit = 0; // Clear TMR0 interrupt flag
TMR0L = 100; // Load TMR0L
T0CON = 0b11000101; // TMR0 in 8 bit mode, prescaler=64
TMR0IE_bit = 1; // Enable TMR0 interrupt
GIEH_bit = 0; // Disable global interrupts for now

nxt_game: // Start of a new game
while(STRT); // Wait until STRT is pressed
for(m = 0; m < 7; m++)Same[m] = 0; // Clear duplicates array
Cnt = 0; // Set no of generated numbers to 0
k = 0; // Array same index

for(;;) // DO FOREVER
{

do // Check for duplicate numbers
{

Flag = 0;
Num = Number(49, seed); // Get a random Number 1 to 49
for(m = 0; m < 7; m++)if(Num == Same[m])Flag = 1;

}while(Flag == 1);

Same[k] = Num; // Save accepted number in array Same
k++;
GIEH_bit = 1; // Enable global interrupts
Delay_Ms(5000); // Display for 5 seconds
Cnt++; // Increment no of displayed nos
if(Cnt == 7) // If 7 numbers displayed
{

Figure 10.14 (Continued)

284 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The main part of the program starts in a for loop. Inside this loop, a new random lottery

number is generated between 1 and 49 by calling function Number. The program then checks

to make sure that this number was not generated before. Variable Flag is set if the number is

duplicated and, if so, a new number is generated.

The program then enables global interrupts by setting bit GIEH of INTCON. The newly

generated number is displayed for 5 seconds. At the end of this period, the program checks to

see whether or not 7 numbers have been generated, and if not, the program continues inside

the for loop to generate another number. If, on the other hand, 7 numbers have been gener-

ated so far, then interrupts are disabled (GIEH ¼ 0) and the two display digits are also dis-

abled to indicate the end of the game. At this point, the program jumps to label nxt_game

and waits until the STRT button is pressed again to start a new game.

Function Display_Segment returns the bit pattern corresponding to a number to be

displayed.

Function Number generates a pseudorandom number between 1 and 49 (a lottery number)

every time it is called. The seed for the number is set outside the program loop, so that a

different set of numbers are generated when the STRT button is pressed.

The timer interrupt service routine (ISR) is identified by a function called interrupt. Here,

the timer register TMR0L is re-loaded with 100. Then the digits of the generated number

Num are extracted and stored in variables Digit2_Data and Digit1_Data. Inside the ISR,

only one of the display digits is enabled. For example, if, on the last entry to the ISR, Digit 1

was enabled, then on the next, the ISR Digit 2 will be enabled and so on. The program also

makes sure that a leading zero is supressed. If the Digit 2 data is 0, then this digit is disabled

so that the leading zero is not shown.

Timer interrupt flag TMR0IF is re-enabled just before exiting the ISR, so that further timer

interrupts can be accepted by the microcontroller.

10.4 PROJECT 10.4 – Event Counter Using 4-Digit 7-Segment
LED Display

10.4.1 Project Description

In this project, a 4-digit 7-segment display is connected to PORT D of the microcontroller.

The project counts external events and displays the count on the display; for example, count-

ing the number of items passing on a conveyor belt in front of a sensor. Leading zeroes are

suppressed in the display. A push button switch STRT is used to clear and start the count.

In this project, the displays are refreshed inside a timer interrupt service routine in the

background, so that the processor is free to do other tasks.

GIEH_bit = 0; // Disable global interrupts
Digit1_Enable = 0; // Disable digit 1
Digit2_Enable = 0; // Disable digit 2
goto nxt_game; // Back to start for a new game

}
}

}

Figure 10.14 (Continued)

7-Segment LED Display Based Projects 285

www.it-ebooks.info

http://www.it-ebooks.info/

10.4.2 Block Diagram

The block diagram of the project is shown in Figure 10.15. The 4-digit display pins a–g are

connected in parallel and each digit is controlled separately. Counting starts when button

STRT is pressed.

10.4.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 10.16. The displays are connected in

parallel to PORT D of the microcontroller. Each digit is enabled separately by connecting a

transistor as a switch to its common cathode pin, as in the earlier project. Setting the base of

the transistor to logic HIGH turns the transistor ON and enables the display. PORT A pins

RA0 to RA3 are used to control the display enable lines. The STRT push-button switch is

connected to pin RA4 of the microcontroller. Normally RA4 pin is at logic 1 and pressing

Figure 10.15 Block diagram of the project

Figure 10.16 Circuit diagram of the project

286 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

the STRT button forces this pin to logic 0. Events are assumed to cause logic LOW-to-HIGH

state changes on port pin RB0.

If you are using the EasyPIC 7 development board, then make sure that you set to ON

position switches SW4.1 to SW4.4 (i.e. DIS0 to DIS3), to enable all the four 7-segment LED

display digits on the board.

10.4.4 Project PDL

The PDL of the project is given in Figure 10.17. The timer TMR0 is set to interrupt every 5 ms

as before. The timer interrupt is configured, as in the previous project and is not repeated here.

BEGIN
Configure PORT A, PORT B and PORT Das digital output
Disable display digits
Configure TMR0 for 5ms interrupts
Disable interrupts
Wait for STRT button to be pressed
Enable interrupts
DO FOREVER

IF event is detected THEN
Increment the count

ENDIF
ENDDO

END

BEGIN/DISPLAY_SEGMENT
Load bit patterns for numbers 0 to 9 to a Table
Get the bit pattern of the required number
Return the bit pattern to the caller

END/DISPLAY_SEGMENT

BEGIN/INTERRUPT
Re-load timer register
IF Digit is 1 THEN

CALL Display_Segment to display Digit 1
Enable Digit 1

ELSE IF Digit is 2 THEN
CALL Display_Segment to display Digit 2
Enable Digit 2

ELSE IF Digit is 3 THEN
CALL Display_Segment to display Digit 3

ELSE IF Digit is 4 THEN
CALL Display_Segment to display Digit 4

ENDIF
Clear timer interrupt flag

END/INTERRUPT

Figure 10.17 PDL of the project

7-Segment LED Display Based Projects 287

www.it-ebooks.info

http://www.it-ebooks.info/

10.4.5 Project Program

The program is named SEG5.C and the program listing of the project is given in Fig-

ure 10.18. At the beginning of the program, symbols STRT and Event are defined as bits

RA4 and RB0, respectively. Then, PORT A, PORTB and PORT D are configured as digital

I/O ports. PORT D pins are configured as outputs, bits RA0 to RA3 of PORT A are con-

figured as outputs, and bit RB0 of PORT B is configured as an input port.

The display is blanked by setting PORT A to 0 to clear the enable lines of all ports. The

event count is stored in variable Num and this variable is cleared to 0. The timer interrupt is

then configured to provide interrupts at every 5 ms. IPEN is set to 1 to enable priority based

interrupts, and TMR0 is set to high-priority by setting TMR0IP bit to 1. TMR0 is configured

to operate as an 8-bit timer with a prescaler of 64 and TMR0L is loaded with 100 in order to

overflow at 5 ms intervals. TMR0 interrupts are enabled by setting bit TMR0IE bit. Global

interrupts are not enabled (GIEH ¼ 0) at this point in the program.

The program then waits until the STRT button is pressed. Normally this input pin is at

logic 1 and pressing the button forces the RA4 pin to go to logic 0. When the button is

pressed, the program enabled global interrupts by setting GIEH ¼ 1, so that timer interrupts

can be accepted by the microcontroller.

The program then enters an endless loop using a for statement. At this point, the displays

show 0 as the count is zero. Inside the for loop, the program waits while the Event line is at

logic 0. After the Event line goes from 0 to 1, the event counter variable Num is incremented

by 1. The program then waits until the Event line goes back to its idle state (logic 0).

The 7-segment LED digits are refreshed in the background inside the ISR. The ISR first

re-loads TMR0L, so that it continues counting while the other tasks are executed. Function

Convert is called to extract the digits of the current value of the event counter. This function

is called with the following parameters:

Num: current value of the event counter

4: number of digits used

Digit_Data: an output array that will store the extracted digits

As an example, if Num ¼ 3218, then the following values will be loaded into array

Digit_Data:

Digit_Data[0] = 3

Digit_Data[1] = 2

Digit_Data[2] = 1

Digit_Data[3] = 8

Similarly, for example, if Num ¼ 46, then the following values will be loaded into array

Digit_Data:

Digit_Data[0] = 0

Digit_Data[1] = 0

Digit_Data[2] = 4

Digit_Data[3] = 6

288 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
4-DIGIT 7-SEGMENT DISPLAY EVENT COUNTER
======================================

In this project a 4-digit common cathode 7-segment display is connected to PORT D of a
PIC18F45K22 type microcontroller (other types can also be used). The microcontroller is
operated from an 8MHz crystal. The displays are multiplexed where the a-g segment lines
are in parallel, but the common cathode pin (enable) of each display is controlled separately

The project counts events where an event is defined as the change of the state of pin RB0
from logic 0 to logic 1. For example, the project can be used to counts objects passing on
a conveyor belt where a sensor generates a 0 to 1 logic signal whenever an object is detected.

The counting starts when the STRT button is pressed.

Counted objects are displayed on the 4-digit 7-segment display with the leading zeroes
suppressed.

The program uses timer interrupts every 5ms to refresh the 7-segment displays.

The connection between PORT D and the LED segments are as follows:

LED segment PORT D
a RD0
b RD1
c RD2
d RD3
e RD4
f RD5
g RD6

The display digits are controlled as follows:

Digit PORT pin
1 RA0
2 RA1
3 RA2
4 RA3

The STRT button is connected to port RA4 of the microcontroller. Normally RA4 is at logic 1.
Pressing the button forces this pin to go to logic 0.

Events are assumed to occur on pin RB0 of the microcontroller.

Author: Dogan Ibrahim
Date: November, 2011
File: SEG6.C
***/
#define STRT RA4_bit
#define Event RB0_bit

Figure 10.18 Program listing of the project

7-Segment LED Display Based Projects 289

www.it-ebooks.info

http://www.it-ebooks.info/

unsigned int Num;
unsigned char Next_Digit = 1;
unsigned char Digit_Data[4];

//
// This function extracts the digits of number N and stores them in array D. For example,
// if N = 2348 then D[0]=2,D[1]=2,D[2]=4,D[3]=8. Similarly, if N=56 then D[0]=0,D[1]=0,
// D[2]=5,D[3]=6. digits is the number of digits of number N, D is an array declared
// in the calling program. This function uses integers where the maximum N is 65535.
// With 4-digit display numbers 1 - 9999 can be displayed. "int" can be changed to
// "long int" for bigger numbers and more digits. For example, using a 8-digit display
// the maximum number that can be displayed will be 99,999,999 and this will require
// "long int".
//
void Convert(unsigned int N, unsigned char digits, unsigned char *D)
{

unsigned int R, power;
unsigned char i, j, k;

j = digits;
for(i = 0; i < digits; i++) // Do for all digits
{
power = 1;
for(k = 0; k < j-1; k++)power = power * 10; // Find power of 10
j--;
*(D + i) = N / power;
R = N % power;
N = R;
}

}

//
// This function forms the bit pattern corresponding to a number between 0 and 9.
// This bit pattern is returned to the calling program
//
unsigned char Display_Segment(unsigned char Number)
{

unsigned char SevenSegment[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,
0x07,0x7F,0x6F};

unsigned char Disp;

Disp = SevenSegment[Number]; // Get bits of the number to be displayed
return (Disp); // Return bits to main program

}

// This is the Interrupt Service Routine (ISR). The program jumps to this routine every
// 1ms. Here, the display data is sent to the displays and the displays are refreshed.

Figure 10.18 (Continued)

290 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

// A switch statement is used to display data and refresh the displays
//
void interrupt(void)
{

TMR0L = 100; // Re-load TmR0L
Convert(Num, 4, Digit_Data);

switch(Next_Digit)
{
case 1: // DIGIT 1

PORTD = Display_Segment(Digit_Data[3]); // Send DIGIT 1 data
PORTA = 0x01; // Enable DIGIT 1
Next_Digit = 2; // Next is DIGIT 2
break;

case 2:
if(Num > 9) // Suppress leading 0
{

PORTD = Display_Segment(Digit_Data[2]); // Send DIGIT 2 data
PORTA = 0x02; // Enable DIGIT 2

}
Next_Digit = 3; // Next is DIGIT 3
break;

case 3:
if(Num > 99) // Suppress leading 0
{

PORTD = Display_Segment(Digit_Data[1]); // Send DIGIT 3 data
PORTA = 0x04; // Enable DIGIT 3

}
Next_Digit = 4; // Next is DIGIT 4
break;

case 4:
if(Num > 999) // Suppress leading 0
{

PORTD = Display_Segment(Digit_Data[0]); // Send DIGIT 4 data
PORTA = 0x08; // Enable DIGIT 4

}
Next_Digit = 1; // Next is DIGIT 1

}

TMR0IF_bit = 0; // Clear TMR0 interrupt flag
}

//
// Start of main program
//
void main()
{

ANSELD = 0; // Configure PORT D as digital
ANSELA = 0; // Configure PORT A as digital

Figure 10.18 (Continued)

7-Segment LED Display Based Projects 291

www.it-ebooks.info

http://www.it-ebooks.info/

Then, a switch statement is used to send data and to enable each digit of the display.

Variable Next_Digit takes values between 1 and 4 and determines which digit will be ON

next. For example, when Next_Digit ¼ 1, data is sent to DIGIT 1 of the display and this

digit is enabled by sending a logic 1 to the digit enable transistor. Next_Digit is then set to

2 so that on the next entry to the ISR, DIGIT 2 will be processed, and so on. Notice that

any leading zeroes are suppressed before displaying a digit other than DIGIT 1. Thus, for

example, number ‘45’ is displayed as ‘ 45’ and not as ‘0045’. Just before exiting the ISR,

the timer interrupt flag TMR0IF is cleared, so that further timer interrupts can be accepted

by the microcontroller.

10.5 PROJECT 10.5 – External Interrupt Based Event Counter Using
4-Digit 7-Segment LED Display with Serial Driver

10.5.1 Project Description

In this project, a display module known as the BM08M04N-R is used. This is a 4-digit

7-segment LED display manufactured by Nexus Machines Ltd. This is a family of 7-segment

displays ranging in size from 8 to 38 mm and available in colours of red, green and yellow.

The project counts events occurring on external interrupt pin RB0/INT0. An event is said to

occur when the state of RB0/INT pin goes from logic 0 to logic 1. This project is similar to

ANSELB = 0; // Configure PORT B as digital
TRISD = 0; // PORT D pins are outputs
TRISA = 0x10; // RA0-RA3 output, RA4 input
TRISB = 1; // RB0 is input

PORTA = 0; // Disable digits
Num = 0; // Clear count to start with

//
// ConfigureTMR0 to generate interrupts at every 5ms
//

IPEN_bit = 1; // Enable priority based interrupts
TMR0IP_bit = 1; // TMR0 in high priority
TMR0IF_bit = 0; // Clear TMR0 interrupt flag
TMR0L = 100; // Load TMR0L
T0CON = 0b11000101; // TMR0 in 8 bit mode, prescaler=64
TMR0IE_bit = 1; // Enable TMR0 interrupt
GIEH_bit = 0; // Disable global interrupts for no

while(STRT); // Wait until STRT is pressed
GIEH_bit = 1; // Enable timer interrupts

for(;;) // DO FOREVER
{

while(Event == 0); // Wait while Event is 0
Num++; // 0 to 1 detected, increment Num
while(Event == 1); // Wait while Event is 1

}
}

Figure 10.18 (Continued)

292 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Project 10.4, but here the event is interrupt driven and also the display is a 4-digit 7-segment

LED module with serial driver.

The BM08M04N-R display (see Figure 10.19) has an on-board controller chip that

accepts data in serial format. The display has 9 pins, as shown in Table 10.1. 36 bits of

serial data are sent to the display where a logic 1 turns a segment ON. The display has

two pins (pin 1 and 2) where external LEDs can be connected via on-board current limit-

ing resistors. The cathode of the external LEDs should be connected to these pins, and the

anodes to the Vledpin (pin 9). The chip enable pin (pin 3) should be LOW for the display

to be enabled. The brightness pin (pin 7) provides the segment brightness. A resistor is

provided on the board that can be used, or an external resistor can be used to provide the

required brightness. Serial clock pin (pin 5) clocks data into the display on the rising edge

of the clock waveform. Thirty-six clocks are required to clock all the data in.

Table 10.2 shows how data should be sent to the display. The steps are summarised as

follows:

� send Start bit (logic 1);
� send digits a1 to g1 of DIGIT 1 (rightmost digit);
� send decimal point (dp1) of DIGIT 1;
� send a2 to g2 of DIGIT 2;

Figure 10.19 BM08M04N-R display

Table 10.1 BM08M04N-R pin configuration

Pin no Function

1 LED 1 drive

2 LED 2 drive

3 Chip enable

4 Data

5 Clock

6 Vdd (þ5V)

7 Brightness

8 GND (0V)

9 Vled

7-Segment LED Display Based Projects 293

www.it-ebooks.info

http://www.it-ebooks.info/

� send dp2 of DIGIT 2;
� send a3 to g3 of DIGIT 3;
� send dp3 of DIGIT 3;
� send a4 to g4 of DIGIT 4 (leftmost digit);
� send dp4 of DIGIT 4;
� send LED1 bit;
� send LED2 bit;
� send a NULL bit.

The relationship between a number to be displayed and the bit pattern is given in Table 10.3.

For example, to display number 5, we have to send 0 � B6 to the display. That is, the bit

pattern ‘10110110’. The segment of each digit must be sent by shifting the bits to the left, that

is the MSB bit is sent out first. Sending all zeroes to a digit blanks the digit and this is useful

when we want to suppress leading zeroes.

As an example, suppose that we wish to display the number 3561. The steps should be as

follows:

� Send a Start bit. That is send ‘1’.
� Send bit pattern for number 1 with no decimal point. That is, send ‘01100000’.

Table 10.2 Display data

Bit 0 Start Bit 9 a2 Bit 17 a3 Bit 25 a4 Bit 33 LED 1

Bit 1 a1 Bit 10 b2 Bit 18 b3 Bit 26 b4 Bit 34 LED 2

Bit 2 b1 Bit 11 c2 Bit 19 c3 Bit 27 c4 Bit 35 Null

Bit 3 c1 Bit 12 d2 Bit 20 d3 Bit 28 d4

Bit 4 d1 Bit 13 e2 Bit 21 e3 Bit 29 e4

Bit 5 e1 Bit 14 f2 Bit 22 f3 Bit 30 f4

Bit 6 f1 Bit 15 g2 Bit 23 g3 Bit 31 g4

Bit 7 g1 Bit 16 dp2 Bit 24 dp3 Bit 32 dp4

Bit 8 dp1

Table 10.3 Relationship between numbers and segment patterns

Number a b c d e f g dp Hexadecimal

0 1 1 1 1 1 1 0 0 0 � FC

1 0 1 1 0 0 0 0 0 0 � 60

2 1 1 0 1 1 0 1 0 0 � DA

3 1 1 1 1 0 0 1 0 0 � F2

4 0 1 1 0 0 1 1 0 0 � 66

5 1 0 1 1 0 1 1 0 0 � B6

6 1 0 1 1 1 1 1 0 0 � BE

7 1 1 1 0 0 0 0 0 0 � E0

8 1 1 1 1 1 1 1 0 0 � FE

9 1 1 1 1 0 1 1 0 0 � F6

Blank 0 0 0 0 0 0 0 0 0 � 00

294 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� Send bit pattern for number 6 with no decimal point. That is, send ‘10111110’.
� Send bit pattern for number 5 with no decimal point. That is, send ‘10110110’.
� Send bit pattern for number 3 with no decimal point. That is, send ‘11110010’.
� Send zeroes for the two external LEDs. That is, send ‘00’.
� Send a NULL character. That is, send 0 � 0.

The event counting will start when the STRT button is pressed.

The advantage of using a display module, such as the BM08M04, is that all the display

refreshing and control functions are done on the display board. We simply send the data to

be displayed in serial format. As a result of this, the microcontroller is free to do other tasks

while the data is displayed.

10.5.2 Block Diagram

The block diagram of the project is shown in Figure 10.20. Counting starts when the button

STRT is pressed and events are recognised as external interrupts on external interrupt pin

RB0/INT of the microcontroller.

10.5.3 Circuit Diagram

The circuit diagram of the project is simple and is shown in Figure 10.21. The STRT button

is connected to pin RC0 of the microcontroller through a pull-up resistor. Normally RC0 is at

logic 1 and goes to logic 0 when the button is pressed. Events are applied to the RB0/INT0

external interrupt pin of the microcontroller. The data and clock pins of the display are con-

nected to port pins RC6 and RC7, respectively. Pin 6 of the display is connected to a þ5 V

power supply, and pins 3 and 8 are connected to ground.

10.5.4 Project PDL

The PDL of the project is given in Figure 10.22.

Figure 10.20 Block diagram of the project

7-Segment LED Display Based Projects 295

www.it-ebooks.info

http://www.it-ebooks.info/

10.5.5 Project Program

The program is named SEG6.C and the program listing of the project is given in Fig-

ure 10.23. At the beginning of the program, symbols STRT, Data_Pin and Clk_Pinare are

defined as bits 0, 6 and 7 of PORT C, respectively.

In the main program, PORT B and PORT C are configured as digital ports. Port pins RB0

and RC0 are configured as inputs, while other bits of PORT B and PORT C are configured as

outputs. The program then configures external interrupts on pin RB0/INT. IPEN is set to 1, to

enable priority based interrupts. INT0IE is set to 1, to enable external interrupts on pin

RB0/INT. Bit INTEDG0 is set to 1, so that external interrupts are accepted on the

rising edge (logic 0 to 1) of the event signal. Global interrupts are not enabled at this stage

(GIEH ¼ 0). The program then waits until button STRT is pressed. When this button is

pressed, the STRT pin goes to logic 0 and the program continues. Event counter is set to 0 �
FFFF, so that the next count will be 0. An external interrupt is created by setting the interrupt

flag INT0IF to 1 and by enabling global interrupts (GIEH ¼ 1). As a result of this, event

count will be incremented inside the ISR so that variable Num will become 0, and the display

will show 0 to indicate that it is ready to start counting events.

Function Convert extracts the digits of the current value of the event counter. This func-

tion is called with the following parameters:

Num: current value of the event counter

4: number of digits used

Digit_Data: an output array that will store the extracted digits

Figure 10.21 Circuit diagram of the project

296 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

As an example, if Num ¼ 4597, then the following values will be loaded into array

Digit_Data:

Digit_Data[0] = 4

Digit_Data[1] = 5

Digit_Data[2] = 9

Digit_Data[3] = 7

Function Display_Segment forms the bit pattern to be sent to a digit of the display, in order

to display a number.

The ISR is defined by using reserved word interrupt and the program jumps here whenever

an external event occurs. Inside the ISR, the event counter (Num) is incremented by 1. In

addition, the digits of variable Num are extracted and stored in array Digit_Data by calling

function Convert. Then, function Display_Numbers is called to display the total event count

BEGIN
Configure PORT B and PORT C
Configure external interrupts on RB0/INT0 pin
Wait until STRT button is pressed
Display 0 to indicate that the event counter is ready
Wait for external interrupts

END

BEGIN/CONVERT
Extract digits of the number to be displayed

END/CONVERT

BEGIN/DISPLAY_SEGMENT
Extract bit patterns of a digit

END/DISPLAY_SEGMENT

BEGIN/DISPLAY_NUMBERS
Get bit patterns of all digits
Suppress any leading 0s
Load Start bit into an array
Load segment data into an array
Load LED1 and LED2 drive data into an array
Load Null terminator into an array
Send array data to the display with clock

END/DISPLAY_NUMBERS

BEGIN/INTERRUPT
Increment event counter variable
CALL Convert to extract digit numbers
CALL Display_Numbersto display the event count
Clear external interrupt flag

END/INTERRUPT

Figure 10.22 PDL of the project

7-Segment LED Display Based Projects 297

www.it-ebooks.info

http://www.it-ebooks.info/

/***
EXTERNAL INTERRUPT BASED EVENT COUNTER USING 4-DIGIT 7-SEGMENT SERIAL
DISPLAY MODULE
===

In this project a B08M04N-R type 4-digit 7-segment display with integral controller is used to
display external events.

B08M04 devices are high efficiency red, green, and yellow colour 7-segment displays in sizes of
8mm to 38mm. In addition to 4-digit display, the device provides interface for two external LEDs.

Data is displayed by sending 36 bits of serial data that defines the segment data, decimal points,
and the LED drive data. Sending a 1 turns ON that segment. Sending all 0s to a digit blanks that
digit (used to suppress leading zeroes).

The advantage of using a display module such as the B08M04 is that all the display control and
refreshing are done on the board and there is no need to refresh the displays externally. As a
result of this the processor is free to do other tasks while the display is being refreshed.
In addition, the display is controlled with only 2 pins (data and clock).

In this project the B08M04N-R display is connected to a PIC18F45K22 type microcontroller,
operating with a 8MHz crystal. The connection between the display and the microcontroller
I/O ports is as follows:

Display Pins Microcontroller Pins
4 (Data) RC6
5 (Clock) RC7

The Start button is connected to port RC0 of the microcontroller. This pin is normally pulled
HIGH using a pull-up resistor. Pressing the button forces a logic 0 at this pin.

External events are applied to the RB0/INT external interrupt pin of the microcontroller.
An event is assumed to occur when this pin goes from logic 0 to logic 1 (i.e. on the rising edge
of the event)

Author: Dogan Ibrahim
Date: November, 2011
File: SEG6.C
**/
#define STRT RC0_bit
#define Data_Pin RC6_bit
#define Clk_Pin RC7_bit

unsigned int Num;
unsigned char Digit_Data[4];

//
// This function extracts the digits of number N and stores them in array D. For example,
// if N = 2348 then D[0]=2,D[1]=2,D[2]=4,D[3]=8. Similarly, if N=56 then D[0]=0,D[1]=0,
// D[2]=5,D[3]=6. digits is the number of digits of number N, D is an array declared in the

Figure 10.23 Program listing of the project

298 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

// calling program.
//
// This function uses integers where the maximum N is 65535. With 4-digit display numbers
// 1 - 9999 can be displayed. "int" can be changed to "long int" for bigger numbers and more
// digits. For example, using a 8-digit display the maximum number that can be displayed
// will be 99,999,999 and this will require "long int".
//
void Convert(unsigned int N, unsigned char digits, unsigned char *D)
{

unsigned int R, power;
unsigned char i, j, k;

j = digits;
for(i = 0; i < digits; i++) // Do for all digits
{
power = 1;
for(k = 0; k < j-1; k++)power = power * 10; // Find power of 10
j--;
*(D + i) = N / power;
R = N % power;
N = R;
}

}

//
// This function forms the bit pattern corresponding to a number between 0 and 9.
// This bit pattern is returned to the calling program
//
unsigned char Display_Segment(unsigned char Number)
{

unsigned char SevenSegment[] = {0xFC,0x60,0xDA,0xF2,0x66,0xB6,0xBE,
0xE0,0xFE,0xF6};

unsigned char Disp;

Disp = SevenSegment[Number]; // Get bits of the number to be displayed
return (Disp); // Return bits to main program

}

//
// This function sends 36 bits to the display module to display the required number. Array D
// stores the digits to be displayed. For example if the number to be displayed is 3456 then
// D[0]=3,D[1]=4,D[2]=5,D[3]=6. Array DPattern stores the bit pattern to be sent to the
// display for each digit. Notice that DPattern[0] is the bit pattern for DIGIT 1 (rightmost
// digit), DPattern[1] is the bit pattern for DIGIT 2, DPattern[2] is the bit pattern for DIGIT 3,
// and DPattern[3] is the bit pattern for DIGIT 4 (leftmost digit).
//
// Leading zeroes are suppressed by sending all 0s to appropriate digit segments. Array
// DataArray stores all the 36 bits to be sent to the display, including the Start bit, digit
// segment bits, LED1 and LED2 drive bits, and the Null bit. After sending each bit the
// clock line is toggled.

Figure 10.23 (Continued)

7-Segment LED Display Based Projects 299

www.it-ebooks.info

http://www.it-ebooks.info/

//
void Display_numbers(unsigned char D[])
{

unsigned char DataArray[36];
unsigned char i,m,j;
unsigned char dp[] = {0,0,0,0}; // No decimal points
unsigned char DPattern[4];

for(i=0; i<4; i++)DPattern[3-i] = Display_Segment(D[i]); // Get digit bit patterns
//
// Suppress leading zeroes. Sending all 0s to a digit blanks that digit
//

if(Num < 10)
{

Dpattern[1] = 0;
Dpattern[2] = 0;
Dpattern[3] = 0;

}else if(Num < 100)
{

Dpattern[2] = 0;
Dpattern[3] = 0;

}
else if(Num < 1000)Dpattern[3] = 0;

//
// Put all data in an array including the Start bit
//

DataArray[0] = 1; // Start bit

for(i=0; i < 4; i++) // Do for all 4 digits
{

for(j=1; j<=7; j++) // Do for all 7 segments
{
m = DPattern[i] & 0x80; // Get MSB bit
if(m != 0)DataArray[8*i+j] = 1; else DataArray[8*i+j]=0;
DPattern[i] = DPattern[i] << 1; // Shift left

}
DataArray[8*i+j+1] = dp[i]; // Insert decimal point

}

DataArray[33] = 0; // LED1 drive is 0
DataArray[34] = 0; // LED2 drive is 0
DataArray[35] = 0x0; // Null terminator

//
// Now all the required 36 bits are in array DataArray. Send each bit to the display
// module, followed by a clock signal
//

for(i=0; i < 36; i++) // Do for all 36 bits
{
Data_Pin = DataArray[i]; // Send data bit
Clk_Pin = 1; // Clock = 1

Figure 10.23 (Continued)

300 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Delay_us(1); // Wait to settle
Clk_Pin = 0; // Clock = 0
Delay_us(1); // Wait to settle

}

}

// This is the Interrupt Service Routine (ISR). The program jumps to this routine every
// time an external interrupt occurs. i.e. everytime pin RB0/INT0 goes from logic 0 to
// logic 1. Here, the event count (in Num) is incremented, digits of the total events
// are extracted and the number is displayed on the display module.
//
void interrupt(void)
{

Num++; // Increment event counter
Convert(Num, 4, Digit_Data); // Extract digits in array Digit_Data
Display_Numbers(Digit_Data); // Display the event number

INT0IF_bit = 0; // Re-enable interrupt flag
}

//
// Start of main program
//
void main()
{

ANSELB = 0; // Configure PORT B as digital
ANSELC = 0; // Configure PORT C as digital
TRISB = 1; // RB0 is input
TRISC = 1; // Configure PORT C as output

Clk_Pin = 0; // Clear clock pin to start with
//
// Configure RB0/INT0 external interrupt
//

IPEN_bit = 1; // Enable priority based interrupts
INT0IE_bit = 1; // Enable ext interrupts RB0/INT0
INTEDG0_bit = 1; // Interrupt on 0 to 1
INT0IF_bit = 0; // Clear RB0/INT0 interrupts
GIEH_bit = 0; // Disable global interrupts

while(STRT); // Wait until STRT is pressed

Num = 0xFFFF; // Next number will be 0 when
// interrupt occurs

INT0IF_bit = 1; // Force external interrupt to
// display 0 to start with

GIEH_bit = 1; // Enable global interrupts

for(;;) // DO FOREVER
{ // Wait for external interrupts
}

}

Figure 10.23 (Continued)

7-Segment LED Display Based Projects 301

www.it-ebooks.info

http://www.it-ebooks.info/

number on the display. The external interrupt flag for RB0/INT pin is cleared just before

exiting the ISR, so that further external interrupts can be accepted by the microcontroller.

Function Display_Numbers is the most complicated function in the program. The decimal

points (dp1, dp2, dp3 and dp4) are stored in an array called dp. As the decimal points are not

used in this project, they are all cleared to 0. The bit patterns corresponding to each display

digit are extracted by calling function Display_Segment, and are stored in array DPattern.

Notice here that the elements of DPattern are reversed. That is DPattern[0] corresponds to

DIGIT 1 (the rightmost digit). The function then checks for possible leading zeroes and

sends all 0s to the digits that should be blanked. For example, if the event count is say 54,

that is less that 100, then digits 2 and 3 should be blanked so that the display shows ‘54’ and

not ‘0054’. The next part of the function fills array DataArray with the 36-bit data to be sent

to the display. Initially, the Start bit is loaded into DataArray[0]. Then the segment bits of

each digit, starting from DIGIT 1, are shifted left by one and the MSB bit loaded into Data-

Array. This is done by logical ANDing the MSB bit with 0 � 80 to extract this bit, and then

loading a 1 or a 0 into DataArray, depending on whether the MSB bit is set or not. After

loading the segment bits of a digit, the decimal point of that digit is loaded, as described in

Table 10.2. After loading all the necessary 36 bits, a for loop is formed to send each bit to the

display, followed by a clock signal. A clock signal is defined as the 0 to 1 and then 1 to 0

transition of the display clock input. The manufacturer’s data sheet specifies that the mini-

mum clock HIGH and LOW times should be 950 ns. This is why a 1 ms delay is used after

each edge of the clock signal.

Figure 10.24 shows a number displayed on the B08M04N-R display module.

10.6 Summary

This chapter has described the use of 7-segment LED displays in microcontroller based proj-

ects. At the beginning of the chapter, a project using a single-digit display is given. In later

sections, the use of 2 and 4 digit multiplexed displays are described in projects. Finally, the

operation of a 4-digit 7-segment display, with built-in serial driver, is described in a project

to count external interrupt based events.

Figure 10.24 A number displayed on the display module

302 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

10.1 A 7-segment display is connected, as in Figure 10.2. Write a program to count the

odd-numbered integers between 0 and 9 (i.e. 1,3,5,7 and 9) and display these numbers

with 1 second intervals on the 7-segment display.

10.2 A 2-digit 7-segment display is connected, as in Figure 10.8. Write a program to count

from 0 to 99 with 500 ms intervals and display the count on the 7-segment display.

10.3 Explain why a multiplexed 7-segment display should be refreshed in the timer inter-

rupt service routine.

10.4 A 4-digit 7-segment display is connected, as in Figure 10.16. Write a program to

count down from 1000 to 0, and display the count on the 7-segment display with

250 ms intervals.

10.5 A BM08M04N-R type 4-digit 7-segment display is connected to a microcontroller.

Write a program to generate a random number between 1 and 1000 and display this

number on the 7-segment display.

10.6 It is required to develop a dice program using a single digit 7-segment display. A

push-button switch is connected to port pin RA0 of the microcontroller. Write a pro-

gram to display a dice number between 1 and 6 on the display when the button is

pressed. Describe how the program can be modified to display two dice numbers.

7-Segment LED Display Based Projects 303

www.it-ebooks.info

http://www.it-ebooks.info/

11

Text Based LCD Projects

In this chapter we will look at the design of projects using text based LCDs. The LCDs used

in the projects in this section are based on the HD44780 controller. The projects are organ-

ised by increasing difficulty and the reader is recommended to follow the projects in the

given order.

11.1 PROJECT 11.1 – Displaying Text on LCD

11.1.1 Project Description

This is perhaps the simplest LCD project one can have. In this project, the text ‘Hello’ and

‘LCD’ are displayed on the first and second rows of an LCD, respectively. Text ‘Hello’ starts

from column 1 and ‘LCD’ starts from column 5.

11.1.2 Block Diagram

The block diagram of the project is shown in Figure 11.1.

11.1.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 11.2. The LCD is connected to micro-

controller PORT B pins, as in the EasyPIC 7 development board, that is the connection

details are as follows:

LCD Pin Microcontroller Pin

D4 RB0

D5 RB1

D6 RB2

D7 RB3

R/S RB4

E RB5

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

The contrast of the LCD is controlled by connecting a 10 KB potentiometer to pin 3 of the

LCD. A PIC18F45K22 type microcontroller is used with an 8 MHz crystal (any other type of

PIC microcontroller can also be used if desired). The microcontroller is Reset using an exter-

nal push-button.

If you are using the EasyPIC 7 development board, you can turn the LCD backlight ON by

setting switch SW4.6 to ON position.

Figure 11.1 Block diagram of the project

Figure 11.2 Circuit diagram of the project

306 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.1.4 Project PDL

The PDL of this project is very simple and is given in Figure 11.3.

11.1.5 Project Program

The program is named LCD1.C and the program listing of the project is shown in Figure 11.4.

At the beginning of the project, the connections between the microcontroller and the LCD are

defined using sbit statements. In the main program, PORT B is configured as a digital output

port. The LCD library is initialised by calling the Lcd_Init function. Then the LCD is cleared

and the cursor is disabled. Text Hello is displayed starting from row 1, column 1, by entering

the text directly into function Lcd_Out. Text LCD is displayed starting from row 2, column 5,

by declaring the text in a string (character array terminated with a Null character) named Txt.

The program then waits in a loop forever. Notice that in microcontroller based applications,

because there is no operating system to return to, the end of a program must be well defined.

If the program is in a continuous loop, then there is no problem. But in examples such as here,

after displaying the text, the program should be stopped by creating an endless loop.

Figure 11.5 shows the text displayed on the LCD.

11.2 PROJECT 11.2 – Moving Text on LCD

This project will show how we can move text on the LCD. Here, we will display a text on

both rows of a 2� 16 LCD and then move the text left and right. Initially, text ‘Shift’ will be

displayed starting from row 1, column 1 of the LCD. Similarly, text ‘LCD’ will be displayed

starting on row 2, column 5. The program will then shift the displayed texts 6 positions to the

right, wait for 5 seconds, and then shift them left by 6 positions back to their original places.

A 1 second delay will be introduced between each shift operation. The text positions on the

LCD are shown below:

1234567890123456

Shift Initial text position

LCD

Shift Text shifted right by 6 positions

LCD

Shift Text shifted left by 6 positions

LCD

The delay between each shift operation can be adjusted, as required in the program.

BEGIN
Define the connection between the LCD and the microcontroller
Configure PORT B as digital output
Initialize LCD
Clear LCD screen
Display message on the LCD

END

Figure 11.3 PDL of the project

Text Based LCD Projects 307

www.it-ebooks.info

http://www.it-ebooks.info/

/**
WRITE TEXT TO LCD
=================

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type
microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller
can be used if desired).

The LCd is connected to PORT B of the microcontroller as follows:

LCD pin Microcontroller pin
D4 RB0
D5 RB1
D6 RB2
D7 RB3
R/S RB4
E RB5

R/W pin of the LCd is not used and is connected to GND. The brightness of the LCDis
controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD.
Other pins of the potentiometer are connected to power and ground.

The following text is displayed on the LCD:

HELLO
LCD

Author: Dogan Ibrahim
Date: November, 2011
File: LCD1.C
**/
// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

unsigned char Txt[] = "LCD";

void main()
{

Figure 11.4 Program listing of the project

308 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.2.1 Block Diagram

The block diagram of the project is as in Figure 11.1.

11.2.2 Circuit Diagram

The circuit diagram of the project is as in Figure 11.2.

11.2.3 Project PDL

The PDL of this project is very simple and is given in Figure 11.6.

11.2.4 Project Program

The program is named LCD2.C and the program listing of the project is shown in Figure 11.7.

At the beginning of the project, the connection between the microcontroller and the LCD are

defined using sbit statements. In the main program, PORT B is configured as a digital output

port. The LCD library is initialised by calling the Lcd_Init function. Then the LCD is cleared

and the cursor is disabled. Text Shift is displayed starting from row 1, column 1, and text LCD

is displayed starting from row 2, column 5.

The main part of the program is in an endless loop formed using a for statement. Inside

this loop, the text is moved right by 6 positions by calling function Move_Text_Right. After

a 5 second delay, the text is moved left by 6 positions by calling function Move_Text_Left.

Both of these functions require the number of places to be shifted (N), and the delay between

each shift operation (Dly) to be entered in arguments when the functions are called. The LCD

ANSELB = 0; // Configure PORT B as digital
TRISB = 0; // Configure PORT B pins as output

Lcd_Init(); // Initialize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear display
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off
Lcd_Out(1, 1, "Hello"); // Write text starting Row 1, Column 1
Lcd_Out(2, 5, Txt); // write text starting Row 2, Column 5

while(1); // End of program, wait here forever
}

Figure 11.4 (Continued)

Figure 11.5 Displaying text on the LCD

Text Based LCD Projects 309

www.it-ebooks.info

http://www.it-ebooks.info/

commands _LCD_SHIFT_RIGHT and _LCD_SHIFT_LEFT are used to shift the text right

and left, respectively.

In the program given in Figure 11.7, the delay between each shift operation is specified as 1

second and the characters can be seen as they are being shifted. In practical applications, a much

smaller delay (e.g. 10 ms or less) should be used, so that the shift operation is very quick.

11.3 PROJECT 11.3 – Counting with the LCD

In this project, we will see how to display numbers in addition to text on the LCD. Here, an

up-counter will be designed that will count with 1 second intervals. The count will be dis-

played as follows:

Cnt = nnn

11.3.1 Block Diagram

The block diagram of the project is as in Figure 11.1.

BEGIN
Define LCD to microcontroller connections
Configure PORT B as digital and output
Initialise LCD
Clear LCD
Turn OFF cursor
Display text “Shift” at row 1, column 1
Display text “LCD” at row 2, column 5
DO FOREVER

Shift display right by 6 positions
Wait 5 seconds
Shift display left by 6 positions
Wait 5 seconds

ENDDO
END

BEGIN/MOVE_TEXT_RIGHT
DO required number of times

Use command _LCD_SHIFT_RIGHT to shift display right
Wait 1 second

ENDDO
END/MOVE_TEXT_RIGHT

BEGIN/MOVE_TEXT_LEFT
DO required number of times

Use command _LCD_SHIFT_LEFT to shift display left
Wait 1 second

ENDDO
END/MOVE_TEXT_LEFT

Figure 11.6 PDL of the project

310 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
MOVING TEXT ON LCD
==================

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type
microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller
can be used if desired).

The LCD is connected to PORT B of the microcontroller as follows:

 LCD pin Microcontroller pin
 D4 RB0
 D5 RB1
 D6 RB2
 D7 RB3
 R/S RB4
 E RB5

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD is
controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD.
Other pins of the potentiometer are connected to power and ground.

In this project a text is displayed on both rows of the LCD. This text is then shifted left
and right with 5 second delay between each shift operation.

The following text is initially displayed on the LCD:

 Shift
 LCD

Then the text is shifted right by 6 positions. After a 5 second delay the text is shifted
6 positions to the left, back to its original position. This process is repeated forever.

Author: Dogan Ibrahim
Date: November, 2011
File: LCD2.C
***/
// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

//

Figure 11.7 Program listing of the project

Text Based LCD Projects 311

www.it-ebooks.info

http://www.it-ebooks.info/

// "Dly" milliseconds delay is used between each shift operation.
// This function moves the display by "N" positions to the right.

// For a quick shift, set "Dly" to around 10ms
//
void Move_Text_Right(unsigned char N, unsigned int Dly)
{
unsigned char i;

for(i = 0; i< N; i++)
 {

// Shift right Lcd_Cmd(_LCD_SHIFT_RIGHT);
// Wait a bit VDelay_Ms(Dly);

 }
}

//
// This function moves the display by "N" positions to the left.
// "Dly" milliseconds delay is used between each shift operation.
// For a quick shift, set "Dly" to around 10ms
//
void Move_Text_Left(unsigned char N, unsigned int Dly)
{
unsigned char i;

for(i = 0; i< N; i++)
 {

// Shift left Lcd_Cmd(_LCD_SHIFT_LEFT);
// Wait a bit VDelay_Ms(Dly);

 }
}

//
// Start of Main program
//
void main()
{

// Configure PORT B as digital ANSELB = 0;
// Configure PORT B pins as output TRISB = 0;

// Initialize LCD Lcd_Init();
// Clear display Lcd_Cmd(_LCD_CLEAR);
// Cursor off Lcd_Cmd(_LCD_CURSOR_OFF);
// Write text at Row 1, Column 1 Lcd_Out(1, 1, "Shift");
// Write text at Row2, Column 5 Lcd_Out(2, 5, "LCD");

// DO FOREVER for(;;)
 {

// Move right by 6 places with 1 sec delay Move_Text_Right(6,1000);
// Wait 5 seconds Delay_Ms(5000);
// Move left by 6 places with 1 sec delay Move_text_Left(6,1000);
// Wait 5 seconds Delay_Ms(5000);

 }
}

Figure 11.7 (Continued)

312 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.3.2 Circuit Diagram

The circuit diagram of the project is as in Figure 11.2.

11.3.3 Project PDL

The PDL of this project is very simple and is given in Figure 11.8.

11.3.4 Project Program

The program is named LCD3.C and the program listing of the project is shown in Figure 11.9.

At the beginning of the project, the connections between the microcontroller and the LCD are

defined using sbit statements and the counter variable, Cnt, is initialised to 0. In the main

program, PORT B is configured as a digital output port. The LCD library is initialised, LCD is

cleared, and the cursor is turned OFF. Then an endless loop is formed using a for statement.

Inside this loop, the counter variable Cnt is incremented by one. This variable is then

converted into a string using the mikroC Pro for PIC built-in library function ByteToStr. Here,

the numeric variable is the first argument, and address of a character array, where the con-

verted string will be stored, is the second argument. The character array must have a size of at

least 4 bytes. The converted string equivalent of the count is stored, starting from address 5 of

array Txt as follows:

Txt -> 0 1 2 3 4 5 6 7 8 9

C n t = n nn

Thus, for example, number 1 is displayed as Cnt ¼ 1, where there are two spaces before

the actual number to be displayed. The program then waits for 1 second and the above pro-

cess is repeated.

BEGIN
Define LCD to microcontroller connections
Configure PORT B as digital and output
Initialise count to zero
Initialise LCD
Clear LCD
Turn OFF cursor
DO FOREVER

Increment count
Convert count to string
Display count
Wait 1 second

ENDDO
END

Figure 11.8 PDL of the project

Text Based LCD Projects 313

www.it-ebooks.info

http://www.it-ebooks.info/

/**
COUNTING WITH THE LCD
=====================

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type
microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller
can be used if desired).

The LCD is connected to PORT B of the microcontroller as follows:

LCD pin Microcontroller pin
 D4 RB0
 D5 RB1
 D6 RB2
 D7 RB3
 R/S RB4
 E RB5

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD is
controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD. Other
pins of the potentiometer are connected to power and ground.

In this project an up counter is designed which displays numbers counting up every
second on the display. The display format is as follows:

Cnt = nnn

Because an "unsigned char" is used to store the count, "nnn" is from 0 to 255.

Author: Dogan Ibrahim
Date: November, 2011
File: LCD3.C
***/
// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

Figure 11.9 Program listing of the project

314 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.3.5 Suggestions for Further Development

As shown above, the function ByteToStr inserts leading spaces when it converts a number

into a string. In some applications, we may want to remove these spaces, and for example,

display number 1 as:

Cnt =1

This can easily be done by using the library function Ltrim to remove leading spaces. The

main part of the modified program listing is shown in Figure 11.10. Here, the count is con-

verted into string and stored in character array pointed to by Txt1. Leading spaces are then

removed with the Ltrim function and the new array is pointed to by Txt2. Library function

strcat appends two strings, whose addresses are supplied as arguments. The string whose

address is the second argument is appended to the string whose address is the first argument.

The first string is not changed up to the point where the Null character is located, and the

second string is appended, starting from this point. In Figure 11.10, the Null character is set

at position 5 of the first string (i.e. at the point Cnt ¼), so that numbers are displayed with no

leading zeroes.Variable res is a pointer to the appended string.

11.4 PROJECT 11.4 – Creating Custom Fonts on the LCD

There are some applications where we may want to create custom fonts, such as special char-

acters, symbols or logos on the LCD. This project will show how to create the symbol of an

arrow pointing upwards on the LCD, and then display ‘Up arrow - <symbol of up arrow>’

on the first row of the LCD.

//
// Start of Main program
//
void main()
{

unsigned char Cnt = 0; // Initialise Cnt to 0
unsigned char Txt[] = "Cnt = "; // Display format

ANSELB = 0; // Configure PORT B as digital
TRISB = 0; // Configure PORT B pins as output

Lcd_Init(); // Initialize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear display
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

for(;;) // DO FOREVER
{

Cnt++; // Increment Cnt
ByteToStr(Cnt, Txt+5); // Convert Cnt to string
Lcd_Out(1,1, Txt); // Display Txt (Cnt = nn)
Delay_Ms(1000); // Wait 1 second

}
}

Figure 11.9 (Continued)

Text Based LCD Projects 315

www.it-ebooks.info

http://www.it-ebooks.info/

mikroC Pro for PIC compiler provides a tool that makes the creation of custom fonts very

easy. The steps for creating a font of any shape are given below:

� Start mikroC Pro for PIC compiler.
� Select Tools -> LCD Custom Character. You will see the LCD font editor form shown in

Figure 11.11.
� Select 5� 7 (the default).
� Click ‘Clear all’ to clear the font editor.
� Now, draw the shape of your font by clicking on the squares in the editor window. In this

project, we will be creating the symbol of an ‘up arrow’, as shown in Figure 11.12.
� When you are happy with the font, click the ‘mikroC Pro for PIC’ tab so that the code

generated will be for the mikroC Pro for PIC compiler.
� Click Generate Code’ button. You will get the code, as shown in Figure 11.13.
� Click ‘Copy Code To Clipboard’ to save the code.
� We shall see later in the project how to display this font using the generated code.

11.4.1 Block Diagram

The block diagram of the project is as in Figure 11.1.

11.4.2 Circuit Diagram

The circuit diagram of the project is as in Figure 11.2.

void main()
{

unsigned char Cnt = 0; // Initialise Cnt to 0
unsigned char Txt1[4];
unsigned char *Txt2;
unsigned char Disp[]="Cnt = ";
unsigned char *res;

ANSELB = 0; // Configure PORT B as digital
TRISB = 0; // Configure PORT B pins as output

Lcd_Init(); // Initialize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear display
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

for(;;) // DO FOREVER
{

Lcd_Cmd(_LCD_CLEAR);
Cnt++; // Increment Cnt
ByteToStr(Cnt, Txt1); // Convert Cnt to string
Txt2=Ltrim(Txt1); // Remove leading spaces
Disp[5]=0; // Get ready to append strings
res=strcat(Disp,Txt2); // res is the appended string
Lcd_Out(1,1, res); // Display as Cnt = nnn with no leading 0s
Delay_Ms(1000); // Wait 1 second

}
}

Figure 11.10 Modified program listing

316 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.4.3 Project PDL

The PDL of this project is very simple and is given in Figure 11.14.

11.4.4 Project Program

The program is named LCD4.C and the program listing of the project is shown in Figure 11.15.

At the beginning of the project, the connections between the microcontroller and the LCD are

defined using sbit statements. PORT B is configured as a digital output port. The LCD is initial-

ised, cleared and the cursor is turned OFF. Then the Lcd_Out function is called to display the text

‘Up arrow – ’, starting at row 1 and column 1 of the LCD. Function CustomChar is generated by

the compiler and this function displays the created font at the specified row and column positions.

Figure 11.16 shows a picture of the LCD display.

11.5 PROJECT 11.5 – LCD Dice

In this project, two dice numbers are displayed on the LCD when the user presses a button called

STRT. The text ‘Good Luck’ is displayed in the first row of the LCD. The two dice numbers are

displayed in the second row in the following format (assuming the numbers are 4 and 6):

Good Luck

4 6

Figure 11.11 LCD font editor

Text Based LCD Projects 317

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11.12 Creating an ‘up arrow’ font

Figure 11.13 Generating code for the font

318 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.5.1 Block Diagram

The block diagram of the project is shown in Figure 11.17.

11.5.2 Circuit Diagram

The circuit diagram of the project is shown in Figure 11.18. The LCD is connected to

PORT B, as in the earlier projects. The STRT button is connected to pin RC0. This pin is

normally at logic 1 and goes to logic 0 when the button is pressed. The project is based on a

PIC18F45K22 type microcontroller with an 8 MHz crystal clock, although most other PIC

microcontrollers can also be used.

The connections between the microcontroller and the LCD are as follows:

LCD Pin Microcontroller Pin

D4 RB0

D5 RB1

D6 RB2

D7 RB3

R/S RB4

E RB5

The contrast of the LCD is controlled by connecting a 10 KB potentiometer to pin 3 of the

LCD. The microcontroller is Reset using an external push-button.

11.5.3 Project PDL

The PDL of this project is given in Figure 11.19.

11.5.4 Project Program

The program is named LCD5.C and the program listing of the project is shown in Figure 11.20.

At the beginning of the project, the connections between the microcontroller and the LCD are

BEGIN
Define microcontroller – LCD connections
Define bit map of the required font
Configure PORT B as digital and output
Initialise LCD
Display text on LCD
CALL CustomChar to display the created font

END

BEGIN/CustomChar
Display required font as character 0

END/CustomChar

Figure 11.14 PDL of the project

Text Based LCD Projects 319

www.it-ebooks.info

http://www.it-ebooks.info/

/**
CREATING CUSTOM FONT ON LCD
===========================

This project displays a custom font on the LCD. An "up arrow" is displayed with text as
shown below:

Up arrow - <up arrow symbol>

The font has been created using the mikro C font editor.

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type
microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller can be
used if desired).

The LCD is connected to PORT B of the microcontroller as follows:

LCD pin Microcontroller pin
 D4 RB0
 D5 B1
 D6 RB2
 D7 RB3
 R/S RB4
 E RB5

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD is
controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD. Other
pins of the potentiometer are connected to power and ground.

Author: Dogan Ibrahim
Date: November, 2011
File: LCD4.C
**/
// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

//

Figure 11.15 Program listing of the project

320 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

// The following code is generated automatically by the mikroC compiler font editor
//
const char character[] = {4,14,21,4,4,4,4,4};

void CustomChar(char pos_row, char pos_char) {
char i;
Lcd_Cmd(64);
for (i = 0; i<=7; i++) Lcd_Chr_CP(character[i]);
Lcd_Cmd(_LCD_RETURN_HOME);
Lcd_Chr(pos_row, pos_char, 0);

}

//
// Start of Main program
//
void main()
{

ANSELB = 0; // Configure PORT B as digital
TRISB = 0; // Configure PORT B pins as output

Lcd_Init(); // Initialize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear display
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

Lcd_Out(1, 1, "Up arrow -"); // Display text "Up arrow -"
CustomChar(1, 12); // Display the "up arrow" symbol

while(1); // End of program, wait here forever
}

Figure 11.15 (Continued)

Figure 11.16 The LCD display

Figure 11.17 Block diagram of the project

Text Based LCD Projects 321

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11.18 Circuit diagram of the project

BEGIN
Define STRT connection
Define the connection between LCD and microcontroller
Configure PORT B and PORT C as digital
Configure PORT B as output
Configure RC0 as input
Initialise LCD
Turn OFF cursor
Clear LCD
DO FOREVER

Wait Until STRT is pressed
CALL Number to get first dice number
CALL Number to get second dice number
Convert dice numbers to characters
Display text “Good Luck” on first row
Display the two dice numbers on second row
Wait 5 seconds
Clear LCD

ENDDO
END

BEGIN/Number
Generate a random number between 1 and 6
Return the generated number to the calling program

END/Number

Figure 11.19 PDL of the project

322 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
LCD DICE
=======

This project displays two dice numbers on the LCD. The numbers are generated when
button STRT (connected to port pin RC0) is pressed. The display is ON for 5 seconds
and after this time the display is cleared, ready to generate two new numbers when
the STRT button is pressed.

The text "Good Luck" is displayed in row 1, and the numbers are displayed in
the second row in the following format:

 1234567890123456
 Good Luck
 X Y

where, X and Y are the two dice numbers.

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type
microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller
can be used if desired).

The LCD is connected to PORT B of the microcontroller as follows:

 LCD pin Microcontroller pin
 D4 RB0
 D5 RB1
 D6 RB2
 D7 RB3
 R/S RB4
 E RB5

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD
LCD is controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD
Other pins of the potentiometer are connected to power and ground.

Author: Dogan Ibrahim
Date: November, 2011
File: LCD5.C
***/
unsigned char seed = 1;

sbit STRT at RC0_bit;

// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

Figure 11.20 Program listing of the project

Text Based LCD Projects 323

www.it-ebooks.info

http://www.it-ebooks.info/

sbitLCD_RS_Direction at TRISB4_bit;
sbitLCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

//
// Pseudo random number generator function
//
unsigned char Number(int Lim, int Y)
{
unsigned char Result;
static unsigned int Y;

 Y = (Y * 32719 + 3) % 32749;
 Result = ((Y % Lim) + 1);
return Result;
}

//
// Start of main program
//
void main()
{
unsigned char Num1, Num2;

// Configure PORT B as digital ANSELB = 0;
// Configure PORT C as digital ANSELC = 0;
// PORT B is output TRISB = 0;
// RC0 is input TRISC = 1;

// Initialise LCD Lcd_Init();
// Disable Cursor Lcd_Cmd(_LCD_CURSOR_OFF);
// Clear Display Lcd_Cmd(_LCD_CLEAR);

for(;;)
 {

// Wait until STRT is pressed while(STRT == 1);

Num1 = Number(6, seed); // Generate first Number between 1 and 6
// Generate second Number Num2 = Number(6, seed);
// Convert number to character Num1 = Num1 + '0';
// Convert number to character Num2 = Num2 + '0';
// Display "Good Luck" Lcd_Out(1, 5, "Good Luck");
// Display first number Lcd_Chr(2,7, Num1);
// Leave a space Lcd_Chr_Cp(' ');
// Display second character Lcd_Chr_Cp(Num2);
// Wait 5 seconds Delay_Ms(5000);
// Clear display Lcd_Cmd(_LCD_CLEAR);

 }
}

Figure 11.20 (Continued)

324 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

defined using sbit statements. Port pin RC0 is given the name START, PORT B is configured as

a digital output port, the LCD is initialised, cleared, and the cursor is turned OFF.

The program executes in an endless loop formed using a for statement. Inside this loop,

the program waits until the START button is pressed. When the button is pressed, the random

number generating function Number is called twice to generate two dice numbers between 1

and 6. This function receives two arguments: the range of numbers to be generated, and the

seed value. The generated numbers are then converted into characters so that they can be

displayed on the LCD. Text ‘Good Luck’ is displayed on the first row, starting from column

5. Then the first number is displayed on the second row, starting from column 7, using func-

tion Lcd_Chr. The second number is displayed after a space character using function

Lcd_Chr_Cp. The numbers are displayed for 5 seconds, and after this time the display is

cleared and the program is ready to generate two new dice numbers when the START button

is pressed.

11.6 PROJECT 11.6 – Digital Voltmeter

This project is about the design of a digital voltmeter device with LCD output. The device

can be used to measure voltages from 0 V to þ5000 mV.

The voltage is measured and displayed every second. The measured voltage will be dis-

played in millivolts and in floating point format as follows:

V = nn.nnnnnn

11.6.1 Block Diagram

The block diagram of the project is shown in Figure 11.21.

11.6.2 Circuit Diagram

The circuit diagram of the project is shown in Figure 11.22. The LCD is connected to PORT

B as before. The analogue voltage to be measured is applied to port pin RA0 of the

Figure 11.21 Block diagram of the project

Text Based LCD Projects 325

www.it-ebooks.info

http://www.it-ebooks.info/

microcontroller, and this pin is configured as an analogue input pin. The project is based on a

PIC18F45K22 type microcontroller with an 8 MHz crystal clock, although most other PIC

microcontrollers supporting A/D converters can also be used.

The connections between the microcontroller and the LCD are as follows:

LCD Pin Microcontroller Pin

D4 RB0

D5 RB1

D6 RB2

D7 RB3

R/S RB4

E RB5

The contrast of the LCD is controlled by connecting a 10 KB potentiometer to pin 3 of the

LCD. The microcontroller is Reset using an external push-button.

If you are using the EasyPIC 7 development board, then connect jumper J15 across pins

RA0, and then you can vary the voltage at this pin for testing, by rotating the arm of the

potentiometer located next to the port pins. Also make sure that the jumpers Read-X and

Read-Y of SW3 are in the OFF positions.

11.6.3 Project PDL

The PDL of this project is very simple and is given in Figure 11.23.

Figure 11.22 Circuit diagram of the project

326 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

11.6.4 Project Program

The program is named LCD6.C and the program listing of the project is shown in Figure 11.24.

At the beginning of the project, the connection between the microcontroller and the LCD are

defined using sbit statements. PORT A is configured as an analogue port and pin RA0 is con-

figured as an input pin. Then, PORT B is configured as a digital output port, the LCD is initial-

ised, cleared, and the cursor is turned OFF. The A/D converter module is initialised by calling

function ADC_Init. This function sets the A/D converter to default configuration, where the

clock is derived from the internal RC circuit, and the reference voltage is set to þ5 V.

The program is executed in an endless loop formed using a for statement. Inside this loop,

the input voltage is converted into digital using the A/D converter of the microcontroller.

Function ADC_Get_Sample(0) reads the analogue voltage from Channel 0 (i.e. port pin

RA0) of the microcontroller. Here, the converted digital data is stored in variable Converted-

Data. The A/D converters on PIC18F45K22 microcontroller are 10-bits wide, providing

1024 steps. Thus, for a reference voltage of þ5 V, each step corresponds to 4.88 mV, and this

is the minimum voltage change that can be detected by our voltmeter. The digital data is then

converted into millivolts and stored in variable mV after multiplying with 5000.0 and divid-

ing by 1024.0. This data is converted into a string using function FloatToStr, so that it can be

displayed on the LCD. The text ‘V ¼ ’ is displayed first starting from row 1, column 1 of the

LCD. Then, the measured voltage is displayed in floating point format. The program then

waits for 1 second, clears the display, and the above process is repeated.

11.7 PROJECT 11.7 – Temperature and Pressure Display

This project is about the design of a microcontroller based device to measure the ambient

temperature and the pressure and to display them on a 2� 16 LCD. The temperature will be

displayed on the first row and the pressure on the second row. The display is in floating point

format as follows:

T(C) = nnn.nnnn

P(mb) = nnn.nnnn

BEGIN
Define connection between the microcontroller and LCD
Configure PORT A as analog and PORT B as digital
Configure pin RA0 as input
Configure PORT B as digital
Initialise LCD
Initialise A/D converter
DO FOREVER

Read analog voltage from A/D converter Channel 0
Convert voltage read to millivolts
Display voltage on the LCD
Wait 1 second
Clear LCD

END
END

Figure 11.23 PDL of the project

Text Based LCD Projects 327

www.it-ebooks.info

http://www.it-ebooks.info/

There are many analogue and digital temperature sensors available. The one used in this

project is the LM35DZ integrated circuit analogue temperature sensor. This is a small 3-pin

sensor, where one of the pins is connected to þV, the other one to GND, and the third one is

the output pin. The output voltage is proportional to temperature and is given by

Vo ¼ 10 mV=�C ð11:1Þ

/**
Digital Voltmeter
==============

This project measures analog voltages in the range 0 to +5V and displays on the LCD.
The measurement is done every second.

The measured voltage is displayed in millivolts and in floating point format for higher
accuracy. The format of the display is as follows:

V = nn.nnnnn

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type
microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller with
A/D converter can be used if desired).

The LCD is connected to PORT B of the microcontroller as follows:

 LCD pin Microcontroller pin
 D4 RB0
 D5 RB1
 D6 RB2
 D7 RB3
 R/S RB4
 E RB5

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD is
controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD. Other
pins of the potentiometer are connected to power and ground.

The analog voltage to be measured is connected to port pin RA0 of the microcontroller.
The A/D converter on the PIC18F45K22 microcontroller is 10-bits wide and thus with a
reference voltage of +5V, the minimum voltage that can be detected is 4.88mV.

Author: Dogan Ibrahim
Date: December, 2011
File: LCD6.C
**/

// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

Figure 11.24 Program listing of the project

328 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Thus, for example, at 10�C the output voltage is 100 mV, at 25�C the output voltage is

250 mV, and so on.

The ambient pressure sensor used in this project is the MPX4115A. This sensor generates

an analogue voltage proportional to the ambient pressure. The device is available either in a

6-pin or an 8-pin package.

The pin configuration of a 6-pin sensor is:

Pin Description

1 Output voltage

2 Ground

3 þ5 V supply

4–6 not used

sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

//
// Start of main program
//
void main()
{

unsigned int ConvertedData;
float mV;
unsigned char Head[] = "V = ";
unsigned char Txt[15];

ANSELA = 1; // Configure PORT A as analog
ANSELB = 0; // Configure PORT B as digital
TRISB = 0; // PORT B is output
TRISA = 1; // RA0 is input

Lcd_Init(); // Initialise LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Disable Cursor
Lcd_Cmd(_LCD_CLEAR); // Clear Display

ADC_Init(); // Initialise the A/D converter module

for(;;) // DO FOREVER
{
ConvertedData = ADC_Get_Sample(0); // Read analog data from Channel 0
mV = ConvertedData * 5000.0 / 1024.0; // Convert to millivolts as floating point
FloatToStr(mV, Txt); // Convert to character in array Txt

Lcd_Out(1, 1, Head); // Display "V = "
Lcd_Out_Cp(Txt); // Display the voltage in mV
Delay_Ms(1000); // Wait 1 second
Lcd_Cmd(_LCD_CLEAR); // Clear display

}
}

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;

Figure 11.24 (Continued)

Text Based LCD Projects 329

www.it-ebooks.info

http://www.it-ebooks.info/

and for an 8-pin sensor:

Pin Description

1 not used

2 þ5 V supply

3 Ground

4 Output voltage

5–8 not used

Figure 11.25 shows pictures of this sensor with both types of pin configurations.

The output voltage of the sensor is given by

V ¼ 5:0�ð0:009�kPa� 0:095Þ ð11:2Þ
or

kPa ¼
V

5:0
þ 0:095

0:009
ð11:3Þ

where

kPa ¼ atmospheric pressure (Kilo Pascals);

V ¼ output voltage of the sensor (V).

The atmospheric pressure measurements are usually shown in millibars. At sea level and

at a temperature of 15�C, the atmospheric pressure is 1013.3 millibars. In equation 11.3 the

pressure is given in kPa. To convert kPa to millibars, we have to multiply equation 11.3 by 10

to give:

mb ¼ 10x

V

5:0
þ 0:095

0:009
ð11:4Þ

or

mb ¼ 2:0 V þ 0:95

0:009
ð11:5Þ

Figure 11.25 MPX4115A pressure sensors

330 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

or

mb ¼ 2000 mV þ 950

9
ð11:6Þ

where the voltage is in millivolts.

Figure 11.26 shows the variation of the output voltage of the MPX4115A sensor as the

pressure is varied. Our range of interest lies in the area where the ambient (atmospheric)

pressure is between 800 and 1100 millibars.

11.7.1 Block Diagram

The block diagram of the project is shown in Figure 11.27. The top row of the LCD shows

the temperature and the bottom row the pressure.

11.7.2 Circuit Diagram

The circuit diagram of the project is shown in Figure 11.28. The LCD is connected to PORT

B, as in the earlier projects. The temperature sensor is connected to analogue input RA0

0

1

2

3

4

5

200 300 400 500 600 700 800 900 1000 1100
Millibars

V
o

lt
s

Figure 11.26 Variation of sensor output voltage with pressure

Figure 11.27 Block diagram of the project

Text Based LCD Projects 331

www.it-ebooks.info

http://www.it-ebooks.info/

(Channel 0) of the microcontroller. In a similar way, the pressure sensor is connected to the

analogue input RA1 (Channel 1) of the microcontroller. Both RA0 and RA1 are configured

as analogue input ports. The project is based on a PIC18F45K22 type microcontroller with

an 8 MHz crystal clock, although most other PIC microcontrollers supporting at least two

A/D converters can also be used.

If you are using the EasyPIC 7 development board, then make sure that jumper J15 is not

connected across RA0 or RA1 inputs.Also make sure that the jumpers Read-X and Read-Y of

SW3 are in the OFF positions.

11.7.3 Project PDL

The PDL of this project is given in Figure 11.29.

11.7.4 Project Program

The program is named LCD7.C and the program listing of the project is shown in Figure 11.30.

At the beginning of the project, the connections between the microcontroller and the LCD are

defined using sbit statements. PORT A is configured as an analogue port and pins RA0 and RA1

are configured as input pins. Then, PORT B is configured as a digital output port, the LCD is

initialised, cleared, and the cursor is turned OFF. The A/D converter module is initialised by

calling function ADC_Init. This function sets the A/D converter to default configuration where

the clock is derived from the internal RC circuit, and the reference voltage is set to þ5 V.

The program is executed in an endless loop formed using the for statement. Inside this

loop, the output of LM35DZ is read using the A/D converter of the microcontroller. Function

Figure 11.28 Circuit diagram of the project

332 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

ADC_Get_Sample(0) reads the analogue voltage from Channel 0 (i.e. port pin RA0) of the

microcontroller. Here, the converted digital data is stored in variable TemperatureData.

The A/D converters on PIC18F45K22 microcontroller are 10 bits wide, providing 1024 steps.

Thus, for a reference voltage of þ5 V, each step corresponds to 4.88 mV, and this is the mini-

mum voltage change that can be detected by our voltmeter. The digital data is then converted

into millivolts and divided by 10 to find the temperature in �C. The temperature is stored in

variable Temperature as a floating point number.

Then, the pressure is read from Channel 1 (i.e. port pin RA1) and stored in variable

PressureData as a digital value. This value is then converted into volts and the pressure is

calculated using equation 11.6 and stored in variable Pressure as a floating point number.

In the final part of the program, both the temperature and pressure are converted into

strings using the built-in function FloatToStr and the resulting strings are displayed on

the top and bottom rows of the LCD. Notice that the temperature reading is displayed as

‘T(C) ¼ nnn.nnnn’, and the pressure reading is displayed as ‘P(mb) ¼ nnn.nnnn’. The

program waits for 1 second and the above process is repeated forever.

Figure 11.31 shows a typical display of the temperature and pressure.

11.8 PROJECT 11.8 – The High/Low Game

This project uses a 4� 4 keypad to create the classical a High/Low game. For those of you

who are not familiar with the game, here are the rules for this version of the game:

� The computer will generate a secret random number between 1 and 32 767.
� The top row of the LCD will display ‘Guess Now . . . ’

BEGIN
Define connections between the LCD and microcontroller
Configure PORT A pins RA0 and RA1 as analog inputs
Configure PORT B as digital output
Initialise LCD
Turn OFF cursor
Clear display
Initialise A/D converter
DO FOREVER

Read temperature from Channel 0
Convert to millivolts
Convert to Degrees Centigrade
Convert to a string
Read pressure from Channel 1
Convert to millivolts
Convert to millibars
Convert to a string
Display temperature on top row of LCD
Display pressure at bottom row of LCD
Wait 1 second
Clear display

ENDDO
END

Figure 11.29 PDL of the project

Text Based LCD Projects 333

www.it-ebooks.info

http://www.it-ebooks.info/

/***
 Temperature and Pressure Display
 ===============================

This project measures the ambient temperature and pressure and displays the values on an LCD.
The temperature is displayed in Degrees Centigrades on the top row, and the pressure is
displayed in millibars on the bottom row in the following format:

T(C)=
P(mb)=

Both dislays are in floating point format for higher accuracy.

The temperature is sensed using a LM35DZ type analog temperature sensor. This sensor gives an
output voltage proportional to the measured temperature.

The pressure is sensed using a MPX4115A type analog pressure sensor.

The measurements are done every second.

The measured values is displayed in millivolts and in floating point format for higher accuracy.

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type

microcontroller, operated from an 8MHz crystal (any other type PIC microcontroller with at

least two A/D converters can be used if desired).

The LCD is connected to PORT B of the microcontroller as follows:

 LCD pin Microcontroller pin
 D4 RB0
 D5 RB1
 D6 RB2
 D7 RB3
 R/S RB4
 E RB5

The temperature sensor is connected to analog port RA0 (AN0) and the pressure sensor is
connected to analog port RA1 (AN1).

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD is
controlled by connecting the arm of a 10K potentiometer to pin Vo of the LCD. Other pins
of the potentiometer are connected to power and ground.

Author: Dogan Ibrahim
Date: December, 2011
File: LCD7.C
***/

// Start of LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

Figure 11.30 Program listing of the project

334 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

sbitLCD_RS_Direction at TRISB4_bit;
sbitLCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD module connections

//
// Start of main program
//
void main()
{

unsigned int TemperatureData, PressureData;
float mV;
unsigned char T[] = "T(C)= ";
unsigned char P[] = "P(mb)= ";

// Configure PORT A as analog ANSELA = 3;
// Configure PORT B as digital ANSELB = 0;
// PORT B is output TRISB = 0;
 // RA0 and RA1 are inputs TRISA = 3;

// Initialise LCD Lcd_Init();
// Disable Cursor Lcd_Cmd(_LCD_CURSOR_OFF);
// Clear Display Lcd_Cmd(_LCD_CLEAR);

// Initialise the A/D converter module ADC_Init();

// DO FOREVER for(;;)
 {
//
// Read and process the Temperature
//

TemperatureData = ADC_Get_Sample(0); // Read temperature data from Channel 0
// Convert to millivolts as floating point mV = TemperatureData * 5000.0 / 1024.0;
// Convert to Degrees Centigrade
// Convert to character in array T

mV = mv / 10.0;
FloatToStr(mV, T+5);

//
// Read and process the Pressure
//

PressureData = ADC_Get_Sample(1); // Read pressure data from Channel 1
mV = PressureData * 5000.0 / 1024.0; // Convert to millivolts as floating point

// Convert to millibars mV = 2000.0*mv + 950.0;
mV = mV / 9.0;
FloatToStr(mV, P+6); // Convert to character in array P

//
// Now display the temperature and pressure
//

// Display temperature Lcd_Out(1, 1, T);
// Display pressure Lcd_Out(2, 1, P);
// Wait 1 second Delay_Ms(1000);
// Clear display Lcd_Cmd(_LCD_CLEAR);

 }
}

Figure 11.30 (Continued)

Text Based LCD Projects 335

www.it-ebooks.info

http://www.it-ebooks.info/

� The player will try to guess what the number is, by entering a number on the keypad and

then pressing the ENTER key.
� If the guessed number is higher than the secret number, the bottom row of the LCD will

display ‘HIGH – Try Again’.
� If the guessed number is lower than the secret number, the bottom row of the LCD will

display ‘LOW – Try Again’.
� If the player guesses the number, then the bottom row will display ‘Well Done . . . ’
� The program waits for 5 seconds and the game re-starts automatically.

Before going into the design of the project, it is worthwhile to learn a bit more about how

the keypads work and the mikroC Pro for PIC commands available to use a keypad.

11.8.1 Keypads

A 4� 4 keypad consists of 16 keys with internal mechanical switches at each key position.

Figure 11.32 shows a typical 4� 4 keypad connected to PORT D of a PIC microcontroller.

The keypad operates on the principle of ‘scan and detect’, where in Figure 11.32, RD0,

RD1, RD2 and RD3 are configured as inputs and connected to columns of the keypad via

Figure 11.31 Typical display of temperature and pressure

Figure 11.32 A 4� 4 keypad connected to a microcontroller

336 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

pull-down resistors. RD4, RD5, RD6 and RD7 pins are configured as outputs and connected

to rows of the keypad. The program sends logic 1 to each row of the keypad in turn and

checks the columns by reading the logic state at the column. Pressing any key will cause

logic 1 to be applied to input pins of the microcontroller. The software detects which key is

pressed by scanning the inputs. For example, assume that while sending out logic 1 to row 2

where numbers 4, 5, 6, B are, we detect that RD2 input is logic 1. In this case, the pressed

key must be number 5, and so on.

11.8.2 mikroC Pro for PIC Keypad Library Functions

mikroC Pro for PIC provides a built-in library called ‘Keypad Library’, which contains func-

tions to help us use keypads in our programs. These functions are given below:

� Keypad_Init
� Keypad_Key_Press
� Keypad_Key_Click

11.8.2.1 Keypad_Init

This function initialises the keypad library. The port where the keypad is connected must be

declared before this function is called using the reserved name ‘keypadPort’. For example, if

the keypad is connected to PORT D, then at the beginning of the program we must declare:

charkeypadPort at PORTD;

11.8.2.2 Keypad_Key_Press

This function reads the key from the keypad when it is pressed. The code of the key is

returned as a number between 1 and 16. If no key is pressed, a 0 is returned.

11.8.2.3 Keypad_Key_Click

This function is similar to Keypad_Key_Press, but this is a blocking function. The function

waits until a key is pressed. If more than one key is pressed, the function will wait for all the

keys to be released and then return code of the first key pressed.

11.8.3 Generating a Random Number

In our program, we will be generating a random integer number using the mikroC Pro for

PIClibrary functions ‘srand’ and ‘rand’. Function ‘srand’ must be called with an integer

argument (or ‘seed’) to prepare the random number generator library. Then, every time func-

tion ‘rand’ is called, a new random number will be generated between 1 and 32 767. The set

of numbers generated are the same if the program is re-started with the same ‘seed’ applied

to function ‘srand’. Thus, if the game is re-started after resetting the microcontroller, the

same set of numbers will be generated.

Text Based LCD Projects 337

www.it-ebooks.info

http://www.it-ebooks.info/

11.8.3.1 Block Diagram

The block diagram of the project is shown in Figure 11.33. The keypad is organised, as

shown in Figure 11.34.

The numbers returned by the mikroC Pro for PICkeypad library when a key is pressed is as

follows:

Key pressed Number returned

1 1

2 2

3 3

A 4

4 5

5 6

6 7

B 8

7 9

8 10

9 11

C 12

� 13

0 14

15

D 16

We will be using key ‘D’ as the ENTER key in our program. Also, we will be correcting

the key numbering in our program so that, for example, when ‘7’ is pressed on the keypad, a

7 is returned and not a 9 as in the above table.

Figure 11.35 shows a typical 4� 4 keypad, manufactured by mikroElektronika (http://

www.mikroe.com). This keypad can be directly plugged into the PORT D connector at the

edge of the EasyPIC 7 development board.

Figure 11.33 Block diagram of the project

338 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11.34 Key configuration on the keypad

Figure 11.35 A typical 4� 4 keypad

Text Based LCD Projects 339

www.it-ebooks.info

http://www.it-ebooks.info/

11.8.3.2 Circuit Diagram

The circuit diagram of the project is shown in Figure 11.36. The LCD is connected to PORT

B, as in the earlier projects. The rows and columns of the keypad are connected to upper and

lower nibbles of PORT D, respectively.

11.8.3.3 Project PDL

The PDL of this project is given in Figure 11.37.

11.8.3.4 Project Program

The program is named LCD8.C and the program listing of the project is shown in

Figure 11.38.

At the beginning of the program, keypadPORT is declared as PORTD and some other

variables used in the program are also declared. Then PORTB is configured as digital I/O,

keypad library is initialised, the LCD is initialised and message ‘High/Low Game’ is dis-

played on the LCD. After a 2 second delay, the program continues in an endless loop.

If this is a new game, the LCD is cleared and message ‘Guess Now . . . ’ is displayed on

the first row of the LCD. Then a random number is generated between 1 and 32 767 by call-

ing library function ‘rand’ and this number is stored in variable ‘GuessNumber’. Notice that

the ‘srand’ library function must be called with an integer number before calling ‘rand’.

The keypad is then checked and numbers are received until the ENTER key (key D) is

pressed. The key numbers are then adjusted such that if, for example, 4 is pressed, number 4

Figure 11.36 Circuit diagram of the project

340 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

is used by the program instead of 5. Similarly, if key 0 is pressed, number 0 is used by the

program instead of 14 returned by the keypad library routine. The numbers entered by the

player are displayed on the second row of the LCD, as they are entered so that the player can

see what he/she has entered. After the player presses the ENTER key, a 1 second delay is

introduced. The number entered by the player is stored in variable ‘PlayerNumber’ in deci-

mal format.

The program then calculates the difference between the secret number in ‘GuessNumber’

and the number entered by the player (in PlayerNumber). This difference is stored in variable

‘Diff’.

If ‘Diff’ is positive, that is if the number entered by the player is greater than the secret

number, then the program displays message ‘HIGH - Try Again’, waits for 1 second, and

clears the second row of the LCD, ready for the player to try another number.

If ‘Diff’ is negative, that is if the number entered by the player is less than the secret num-

ber, then the program displays message ‘LOW - Try Again’, waits for 1 second, and clears

the second row of the LCD, ready for the player to try another number.

If ‘Diff’ is 0, that is if the number entered by the player is equal to the secret number,

then the program displays message ‘Well Done . . . ’ waits for 5 seconds, and sets the

BEGIN
Declare keypad port number
Define LCD to microcontroller pin connections
Configure PORT B as digital
Initialize keypad library
Initialize LCD
Display heading “High/Low Game”
Set new game flag
Wait 2 seconds
DO FOREVER

IF new game flag is set THEN
Clear LCD
Turn OFF cursor
Generate a random number (secret number)
Display “Guess Now..” on row 1

ENDIF
Read and display (on row 2) numbers until ENTER is pressed
IF entered number > secret number THEN

Display “HIGH –Try Again”
Wait 1 second
Clear second row of LCD

ELSE IF entered number < secret number THEN
Display “LOW –Try Again”
Wait 1 second
Clear second row of LCD

ELSE IF entered number = secret number THEN
Display “Well Done..”
Wait 5 seconds
Set new game flag

ENDIF
END

Figure 11.37 PDL of the project

Text Based LCD Projects 341

www.it-ebooks.info

http://www.it-ebooks.info/

/**
High/Low Game Using Keypad
=========================

This project implements the High/Low game using the 4 x 4 kaypad and the LCD. The
program generates a random number between 1 and 32767 and expects the player to
guess the number. The LCD displays "Guess Now.." on top row of the display.

The player then guesses the number by entering a number via the keypad and then
pressing the ENTER key. If the guessed number is bigger than the generated number
the message "HIGH - Try Again" will be displayed on bottom row of the LCD.

If the guessed number is lower than the generated number then the message
"LOW -Try Again" will be generated on the bottom row of the LCD. If on the other hand
the player guesses the number correctly, the bottom row of the LCD will display the
message "Well Done..".

The game will re-start after a delay of 5 seconds.

The microcontroller in this project is PIC18F45K22 and is operated from an 8MHz
crystal as before.

Programmer: Dogan Ibrahim
File: LCD8.C
Date: December, 2011

**/
char keypadPORT at PORTD;
unsigned char kp, new_game;
unsigned int GuessNumber, PlayerNumber;
int Diff;

// Declare LCD connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End of LCD connections

void main()
{

Figure 11.38 Program listing of the project

342 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

unsigned char Txt1[4];

ANSELB = 0; // Configure PORT B as digital
Keypad_Init(); // Initialize keypad library
Lcd_Init(); // Initialize LCD
Lcd_Out(1, 1, "High/Low Game"); // Display heading
Delay_ms(2000); // Wait 2 seconds

new_game = 1;
srand(5); // Generate a random number sequence

for(;;) // DO FOREVER
{

if(new_game == 1)
{

Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Turn OFF cursor
Lcd_Out(1, 1, "Guess Now.."); // Display "Guess Now.."
GuessNumber = rand(); // Generate a random number

}
kp = 0;
PlayerNumber = 0;
Lcd_Out(2, 1, ""); // Position cursor at 1,1
while(kp != 16) // Until ENTER pressed
{

do
{

kp = Keypad_Key_Click(); // Look for key press
}while(!kp);

if(kp != 16) // If not ENTER key
{

if(kp > 4 && kp <9)kp = kp=kp-1; // 5 is 4, 6 is 5….
if(kp > 8 && kp < 12)kp = kp-2; // 7 is 9, 8 is 10…
if(kp == 14)kp=0; // 0 is14
PlayerNumber = 10*PlayerNumber + kp;
ByteToStr(kp, Txt1);
Txt1[0] = Txt1[2]; // Get the number
Txt1[1] = '\0'; // Make a string
Lcd_Out_Cp(Txt1); // Display on LCD

}
}

Delay_ms(1000); // Wait one second
Diff = PlayerNumber -GuessNumber; // Find the diff

if(Diff > 0) // Greater ?
{

Lcd_Out(2, 1, "HIGH -Try Again");
new_game = 0; // Not a new game
Delay_ms(1000);

Figure 11.38 (Continued)

Text Based LCD Projects 343

www.it-ebooks.info

http://www.it-ebooks.info/

‘new_game’ flag so that a new secret number can be generated by the program. The game

continues as before.

Figures 11.39 to 11.41 show various displays from the game. Notice that the keypad keys

are not debounced in the keypad library and sometimes you may get double key strokes, even

though you press a key once. You should be firm and quick when pressing a key to avoid this

to happen.

11.9 Summary

This chapter has described the use of text based LCD displays in microcontroller based proj-

ects. All the projects given in the chapter have been tested and are working. Early projects

are about displaying text and numbers on LCDs. Then, more advanced projects are given,

such as creating custom fonts, LCD dice project, LCD voltmeter project, and measuring the

ambient temperature and pressure and displaying on the LCD. The last project is the classical

High/Low game, where the microcontroller guesses a number and the user attempts to find

this number. The microcontroller hints when the entered number is higher or lower than the

number guessed.

Figure 11.39 Display from the game – start of the game

Figure 11.40 Display from the game – user guessed 258

Figure 11.41 Display from the game – the guess was low

344 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

11.1 It is required to design an event counter system. An event is recognised by the LOW

to HIGH transition of an external digital signal. Assuming this signal is connected to

port pin RC0 of a PIC microcontroller, write a program to display the number of

events occurring.

11.2 Design a microcontroller based digital thermometer using the LM35DZ temperature

sensor and display the temperature on the LCD. Use þ5 V reference for the A/D

converter.

11.3 Repeat exercise (2), but use a þ3 V reference voltage for the A/D converter.

11.4 Repeat exercise (2), but display the temperature both in �C and in �F.

11.5 Repeat exercise (2), but use an external push-button switch such that the temperature

is normally displayed in �C, but when the switch is pressed the temperature is dis-

played in �F.

Text Based LCD Projects 345

www.it-ebooks.info

http://www.it-ebooks.info/

12

Graphics LCD Projects

In this chapter we will look at the design of projects using graphics LCDs (GLCDs). The

GLCDs used in the projects in this section are 128 � 64 pixel monochrome, 78� 70�
14.3mm displays, based on the KS108/KS107 controller. The projects are organised by

increasing difficulty and the reader is recommended to follow the projects in the given order.

12.1 PROJECT 12.1 – Creating and Displaying a Bitmap Image

12.1.1 Project Description

This project shows how a monochrome bitmap image can be created and then displayed on

the GLCD.

If a bitmap image is already available, we can use the mikroC Pro for PIC GLCD bitmap

editor tool to convert the image into a data array, so that it could be used in a C program to

display the image on the GLCD. Alternatively, we could create our own bitmap images using

suitable programs. There are many tools for creating bitmap images. Perhaps the easiest way

to create a bitmap image is by using the Windows Paint program, which is distributed free of

charge with the Windows Operating System. In this project we will use the Paint program to

create the image of a face with text and then display it on the GLCD. Notice that the created

image or the available bitmap image must be monochromatic.

The steps in creating a bitmap image with the Paint program and then displaying on the

GLCD are given below:

� Start the Windows Paint program. Start -> All Programs -> Accessories -> Paint.
� Click ‘Resize’. Unclick ‘Maintain Aspect Ratio’. Click ‘Pixels’. Select the GLCD

screen size in pixels as Horizontal: 128, Vertical: 64. Click ‘OK’ to accept the entries (see

Figure 12.1).
� Click the ‘Magnifier’ button and then click on the image to enlarge the image to a suitable

size.
� Click ‘View’ and then select ‘Gridlines’. As shown in Figure 12.2, you should now see the

GLCD screen with 128 pixels in the horizontal direction, and 64 pixels in the vertical

direction.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12.2 The GLCD screen

Figure 12.1 Select the GLCD screen size as 128 � 64 pixels

348 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� We can now create our bitmap image. Click the ‘Home’ button so that we can select and

use the various drawing tools. In this project, the simple bitmap image shown in Fig-

ure 12.3 is created as an example.
� Save the image as a bitmap (.BMP) file.
� Start mikroC Pro for PIC program. Select Tools -> GLCD Bitmap Editor.
� Select ‘KS0108’ controller.
� Click ‘Load BMP’ and enter the filename of the image created.
� As shown in Figure 12.4, you should see the image on the virtual GLCD. In addition, the

bitmap image code will be shown at the bottom of the tool. The generated code is nothing

more than a constant character array that contains information on which pixels of the

GLCD should be illuminated to display the image. For a GLCD of 128� 64 pixels, the

size of the array would be 1024 bytes. Part of the generated code is shown below for illus-

tration purposes:

// -

// GLCD Picture name: Untitled.bmp

// GLCD Model: KS0108 128x64

// -

const code char Untitled[1024] = {

0, 0, 0, 0, 0, ...

..

..

};

Figure 12.3 Created bitmap image

Graphics LCD Projects 349

www.it-ebooks.info

http://www.it-ebooks.info/

� Click ‘Copy Code to Clipboard’ to save the code in the clipboard for future use.
� We will see later in the project how to use the generated code to display the image on the

GLCD.

12.1.2 Block Diagram

The block diagram of the project is shown in Figure 12.5.

Figure 12.5 Block diagram of the project

Figure 12.4 Using the GLCD Bitmap Editor

350 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.1.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 12.6. The project is based on the

PIC18F45K22 microcontroller, operating with an 8MHz crystal (although most other types

of PIC microcontrollers can also be used).

The connections between the GLCD and the microcontroller are as follows:

GLCD Pin Microcontroller Pin

CS1 RB0

CS2 RB1

RS RB2

R/W RB3

EN RB4

RST RB5

D0 RD0

D1 RD1

D2 RD2

Figure 12.6 Circuit diagram of the project

Graphics LCD Projects 351

www.it-ebooks.info

http://www.it-ebooks.info/

D3 RD3

D4 RD4

D5 RD5

D6 RD6

D7 RD7

The contrast of the LCD is controlled by connecting a 10 KB potentiometer to pin Vo and

Vee of the GLCD. The microcontroller is Reset using an external push-button.

If you are using the EasyPIC 7 development board, you should set the BCK jumper of

SW4 to the þ5V position to enable the GLCD backlight. The GLCD contrast can be

adjusted by the potentiometer located next to the display.

12.1.4 Project PDL

The PDL of this project is very simple and is given in Figure 12.7.

12.1.5 Project Program

The program is named GLCD1.C and the program listing of the project is shown in Fig-

ure 12.8. At the beginning of the program, the bitmap array is declared using the code

generated by the Bitmap Editor. Then, the connection between the microcontroller and the

GLCD are defined using sbit statements. The GLCD is connected to ports B and D of the

microcontroller and thus both of these ports are configured as digital I/O ports using

ANSEL statements (different PIC microcontrollers may require different settings). The

GLCD library is then initialised using the Glcd_Init function. This function must be called

before calling to any other GLCD function. The GLCD screen is then cleared using the

Glcd_Fill(0�0), which turns OFF all pixels of the GLCD. The created bitmap is then dis-

played on the GLCD by calling to function Glcd_Image and entering the name of the

bitmap array as an argument.

Figure 12.9 shows the created image displayed on the GLCD.

BEGIN
Include bitmap character array
 Configure PORT B and PORT D as digital
 Configure PORT B and PORT D as outputs
 Initialise GLCD
 Clear GLCD screen
 Display bitmap image

END

Figure 12.7 PDL of the project

352 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/**
DISPLAYING GLCD BITMAP IMAGE
============================

This project shows how a bitmap image can be displayed on the GLCD. The bitmap image is
assumed to be in a file with extension BMP. The image file can be an existing bitmap file, or a
program (e.g. Windows Paint) can be used to create a new bitmap image and then save it as
a BMP file.

The GLCD Bitmap Editor is used first to convert the image to a character array. mikroC GLCD
function Glcd_Image is then used to display the image on the GLCD.

It is important that the image must be monochromatic.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 - D7 RD0 - RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and
+5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: GLCD1.C
**/

// --
// GLCD Picture name: Untitled.bmp
// GLCD Model: KS0108 128x64
// --

const code char Face[1024] = {
 0,
0, 0, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Figure 12.8 Program listing of the project

Graphics LCD Projects 353

www.it-ebooks.info

http://www.it-ebooks.info/

 0,
0, 0, 0, 0, 0, 0, 0, 0, 128, 64, 32, 32, 16, 8, 8, 4, 4, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 64, 128, 0, 0,
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0,
0, 0, 0, 224, 16, 12, 2, 1, 0,
0, 1, 6, 8, 48,
192, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 248, 4,
248, 252, 3, 0, 0, 0, 0, 0, 0, 0, 224, 16, 8, 8, 16, 224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 252, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 136, 4, 4, 136, 112, 0, 0, 0, 0,
0, 0, 0, 0, 7, 248, 248, 4, 248, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 3, 4,
3, 7, 56, 192, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 3, 252, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
192, 56, 7, 3, 4, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0,
0, 0, 0, 1, 2, 12, 16, 32, 64, 128, 128, 0, 0, 0, 0, 0, 0, 192, 192, 192, 192, 32, 32, 32, 32,
32, 32, 32, 32, 32, 35, 32, 32, 32, 32, 32, 32, 32, 32, 32, 160, 192, 192, 192, 0, 0, 0, 0, 0,
0, 128, 64, 32, 16, 12, 3, 0,
0, 0,
 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 4, 8, 8, 16, 16, 16, 32, 33, 33, 33, 33, 65, 65,
65, 65, 65, 65, 65, 65, 65, 65, 33, 33, 33, 33, 33, 16, 16, 16, 8, 8, 4, 4, 2, 1, 1, 0, 0,
0, 252, 32, 32, 32, 252, 0, 0, 224, 80, 80, 112, 0, 0, 252, 0, 0, 252, 0, 0, 176, 16, 16, 176,
0, 0,
 0,
0,
0, 1, 0, 0, 0, 1,
0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

// Glcd module connections
charGLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;

Figure 12.8 (Continued)

354 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.2 PROJECT 12.2 – Moving Ball Animation

12.2.1 Project Description

This project shows how the simple animation of a moving ball can be created on the GLCD.

A filled circle is drawn to represent the ball. This figure is then moved across the GLCD

screen from left-to-right and then right-to-left inside a rectangular shape. The text ‘Moving

sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//
// Start of main program
//
void main()
{
 ANSELB = 0; // Configure PORT A as digital
 ANSELD = 0; // Configure PORT B as digital
 TRISB = 0; // PORT B is output
 TRISA = 0; // PORT A is output

Glcd_Init(); // Initialise GLCD
Glcd_Fill(0x0); // Clear GLCD
Glcd_Image(Face); // Draw the bitmap image

while(1); // End of program, wait here forever

}

Figure 12.8 (Continued)

Figure 12.9 Created image displayed on the GLCD

Graphics LCD Projects 355

www.it-ebooks.info

http://www.it-ebooks.info/

Ball’ is written on the shape. The format of the display and co-ordinates of the shapes on the

screen are shown in Figure 12.10.

12.2.2 Block Diagram

The block diagram of the project is as shown in Figure 12.5.

12.2.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 12.6.

12.2.4 Project PDL

The PDL of this project is given in Figure 12.11.

12.2.5 Project Program

The program is named GLCD2.C and the program listing of the project is given in Fig-

ure 12.12. At the beginning of the program, the connection between the microcontroller and

the GLCD are defined using sbit statements. The GLCD is connected to ports B and D of the

microcontroller and thus both of these ports are configured as digital I/O ports using ANSEL

statements. The GLCD library is then initialised using the Glcd_Init function. This function

must be called before calling to any other GLCD function. The GLCD screen is then cleared

using the Glcd_Fill(0�0), which turns OFF all pixels of the GLCD.

The text ‘Moving Ball’ is displayed in Page 1, starting from x co-ordinate 30. Then a

rectangle is drawn where the ball moves. The top left and bottom right co-ordinates of this

rectangle are (4,20) and (125,44), respectively. Variable flag is used to determine the direc-

tion of movement. The ball moves from left-to-right when flag ¼ 1, and from right-to-left

when flag ¼ 0. GLCD function Glcd_Circle_Fill is used to represent the ball. This function

Figure 12.10 Ball animation

356 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

draws a filled circle with the specified radius, at the given x,y co-ordinates of the screen. The

y co-ordinate of the ball is fixed at 32, while the x co-ordinate varies between 10 and 120 as

the ball moves from left-to-right. The movement of the ball is animated first by displaying

the ball, and after a short delay by erasing the ball and drawing a new one slightly to the right

(or left) of the previous position. This way the ball shape seems as if it is moving. By varying

the delay, we can modify the speed of movement. The x co-ordinate of the ball is incre-

mented or decremented by 10 pixels as the ball moves from left-to-right or right-to-left,

respectively. When the ball reaches the furthest point on the right-hand side, its direction is

changed by clearing flag to 0. Similarly, when the ball reaches the furthest point on the left-

hand side, its direction is changed by setting flag to 1.

The reader can experiment the effects on animation of changing the delay, size of the

shape, and the step size.

Figure 12.13 shows the created image displayed on the GLCD screen.

12.3 PROJECT 12.3 – GLCD Dice

12.3.1 Project Description

In this project we design a GLCD based dice. The shapes of the numbers on two dices are

imitated on a GLCD. The user presses a STRT button to ‘throw’ two dices. The dice numbers

are then displayed for 5 seconds on the GLCD as real dice faces. After this time, the screen

goes blank and the user is ready to ‘throw’ two new dices.

BEGIN
Define the connection between the GLCD and the microcontroller
Configure PORT A and PORT D as digital
Configure PORT A and PORT D as output
Initialise GLCD
Clear GLCD screen
Write text “Moving Ball”
Draw a rectangle at (4,20), (125,44)
WHILE x co-ordinate < largest x co-ordinate

Draw a filled circle at (x,32)
Wait for a while
Delete the circle at (x,32)
IF left-to-right movement THEN

Increment x co-ordinate
ELSE

Decrement x co-ordinate
ENDIF
IF at furthest right point THEN

Change direction of movement to right-to-left
ENDIF
IF at furthest left point THEN

Change direction of movement to left-to-right
ENDIF

END

Figure 12.11 PDL of the project

Graphics LCD Projects 357

www.it-ebooks.info

http://www.it-ebooks.info/

/**
BALL MOVEMENT ANIMATION
=========================

This project shows how a simple animation can be created on the GLCD. Here, a filled circle
is displayed to represent a small ball. Also, a rectangle is drawn to show the boundaries of the
movement. The ball moves from left-to-right until it reaches the furthest point on the right.
Then, it moves from right-to-left until it reaches the furthest point on the left. This process is
repeated forever.

The speed of the ball is determined by including delay between the movements and the
speed can be changed by changing this delay.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 - D7 RD0 - RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee
and +5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: GLCD2.C
**/

// Glcd module connections
charGLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;

Figure 12.12 Program listing of the project

358 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.3.2 Block Diagram

The block diagram of the project is shown in Figure 12.14.

12.3.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 12.15. The GLCD is connected to

PORT B and PORT D of the microcontroller. The STRT button is normally at logic 1 and is

connected to port pin RC0 of the microcontroller. When the button is pressed, RC0 goes to

logic 0.

sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//
// Start of main program
//
void main()
{

unsigned char x,flag;
// Configure PORT A as digital ANSELB = 0;
// Configure PORT B as digital ANSELD = 0;
// PORT B is output TRISB = 0;
// PORT A is output TRISA = 0;

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);

// Initial x co-ordinate and x step x = 10;
// Start with left-to-right flag = 1;

Glcd_Write_Text("Moving Ball",30,1,1); // Write text
// Draw the rectangle Glcd_Rectangle(4,20,125,44,1);

while(x < 127)
 {

// Draw the ball Glcd_Circle_Fill(x, 32, 4, 1);
// Wait 300ms Delay_Ms(300);
// Erase the ball Glcd_Circle_Fill(x, 32, 4, 0);
// If left-to-right if(flag == 1)
// Move ball right x = x + 10;
// Otherwise (right-to-left) else
// Move ball left x = x - 10;

if(x == 120)flag = 0; // If at furthest right, change direction
if(x == 10)flag = 1; // If at furthest left, change direction

 }

}

Figure 12.12 (Continued)

Graphics LCD Projects 359

www.it-ebooks.info

http://www.it-ebooks.info/

12.3.4 Project PDL

The PDL of this project is given in Figure 12.16.

12.3.5 Project Program

The screen layout of the two dice shapes are designed using the Windows Paint program.

Circles are used to represent the dots on a real dice. A dice number is shown by filling these

circles to correspond to the dots on the faces of a real dice. Figure 12.17 shows the co-

ordinates of the circles for the two dices. As an example, Figure 12.18 shows the dice num-

bers 2 and 5 being displayed on the GLCD.

Figure 12.13 Created image displayed on the GLCD

Figure 12.14 Block diagram of the project

360 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The two dice x co-ordinates are separated from each other by 65 pixels. The radius of the

dice circles are selected as 4 pixels.

The program is named GLCD3.C and Figure 12.19 shows the program listing of the proj-

ect. At the beginning of the program, the radius of the circles is defined as 4 pixels and the

STRT button is defined as connected to pin RC0 of the microcontroller. Then, the connection

between the microcontroller and the GLCD are defined using sbit statements. The GLCD is

connected to ports B and D of the microcontroller and thus both of these ports are configured

as digital I/O ports using ANSEL statements. The GLCD library is then initialised using the

Glcd_Init function. This function must be called before calling to any other GLCD function.

The GLCD screen is then cleared using the Glcd_Fill(0�0), which turns OFF all pixels of

the GLCD.

Function DisplayBackground is then called. This function displays 5 empty circles to

imitate the faces of a real dice. Two dice faces are drawn, separated from each other by

65 pixels. The co-ordinates of the circles are as in Figure 12.17. When variable offset ¼ 0,

the first dice face is drawn, and when offset ¼ 65, the second dice face is drawn.

The program then enters an endless loop, formed using a for statement. Inside this loop,

the background is displayed and two random dice numbers (Num1 and Num2) are generated

between 1 and 6 using function RandomNumber. Function DisplayDice is then called to fill

in the appropriate circles, so that the required number is displayed as the dots on the

faces of real dices. Here, N is the number to be displayed, and offset determines whether

the first or the second dice number is to be displayed. When offset is 0, the first dice

number is displayed, and when offset is 65, the second dice number is displayed. radius

Figure 12.15 Circuit diagram of the project

Graphics LCD Projects 361

www.it-ebooks.info

http://www.it-ebooks.info/

is the radius of the circles in pixels. mode determines whether a circle should be filled in

or not. When mode is 1, the circle is filled in to display a dot. When mode is 0, the circle

is drawn blank. This mode is used when it is required to clear a dice number (i.e. to clear

the circles). Function DisplayDice uses a switch statement to fill in or empty the circles

based on the dice numbers.

BEGIN
Define connection between GLCD and microcontroller
Configure PORT B, PORT C, and PORT D as digital
Configure PORT B and PORT D as output
Configure RC0 as input
Initialise GLCD
Clear GLCD
DO FOREVER

CALL DisplayBackground
Wait until STRT is pressed
CALL RandomNumber to get the first dice number
CALL RandomNumber to get the second dice number
CALL DisplayDice to fill in circles to represent dots on a real dice for first number
CALL DisplayDice to fill in circles to represent dots on a real dice for second number
Wait 5 seconds
CALL DisplayDice to empty the circle which has been filled in for first number
CALL DisplayDice to empty the circle which has been filled in for second number

ENDDO
END

BEGIN/RandomNumber
Generate a number between 1 and 6
Return the number to the calling program

END/RandomNumber

BEGIN/DisplayBackground
Draw empty circles to represent the faces of two dices

END/DisplayBackground

BEGIN/DisplayDice
IF offset = 0 THEN

IF mode = 1 THEN
Fill in the circles to represent faces of a real dice for first number

ELSE
Empty the circles for first number

ENDIF
ELSE IF offset = 65 THEN

IF mode = 1 THEN
Fill in the circles to represent faces of a real dice for second number

ELSE
Empty the circles for second number

ENDIF
ENDIF

END/DisplayDice

Figure 12.16 PDL of the project

362 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The program then waits for 5 seconds and then clears the circles by setting mode to 0 for

the circles, which are filled in. At this point, the program is ready, and waits as above for the

STRT button to be pressed again so that it generates new dice numbers.

Figure 12.20 shows a typical display of the GLCD.

12.3.6 Modifying the Program

The program given in Figure 12.19 can be made more user friendly by adding text to the

display. For example, the text ‘Start . . . ’ can be added to the display before the user presses

the STRT button. Also, the text ‘Good Luck’ can be added after the dice figures are dis-

played. The actual dice numbers can also be displayed at the bottom of each dice figure to

make the display more user friendly.

Figure 12.21 shows the modified program (GLCD4.C). Here, the text ‘Start . . . ’ is dis-

played at the top of the display in Page 0, starting from x co-ordinate 40. The text ‘Good

Luck’ is displayed at the same co-ordinates after the two dice numbers are generated. In

addition, the two dice numbers Num1 and Num2 are converted into characters n1 and n2,

respectively. These characters are then displayed at the bottom of the dice figures. After dis-

playing the texts and the dice figures, the program waits for 5 seconds. After this delay, the

filled-in dice circles are changed into empty circles. In addition, the dice number texts are

deleted and the text ‘Good Luck’ is changed to ‘Start . . . ’ to tell the user that the STRT

button can be pressed again to generate two new dice numbers.

Figure 12.18 Dice numbers 2 and 5 displayed

Figure 12.17 Co-ordinates of the dice circles

Graphics LCD Projects 363

www.it-ebooks.info

http://www.it-ebooks.info/

/**
GLCD DICE
=========

This project shows how two dice faces can be imitated on a GLCD. A STRT button is used in the
project. The program waits until the STRT button is pressed. When the button is pressed, two
random numbers are generated between 1 and 6 and these numbers are shown on the GLCD
GLCD in the form of dice faces. The dots on a real dice are imitated with circles on the GLCD.
Circles are filled-in to represent the dice number thrown.

The two dice faces are organised as follows on the GLCD:

o
o
o

o
o
o
o

o
o
o

o
o
o
o

The x co-ordinates of the two dices are separated by 65 pixels. The radius of each circle is
chosen as 4 pixels.

The dice numbers are displayed for 5 seconds, and after this time the GLCD screen is cleared
to indicate that the user can press the STRT button to create two new numbers.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 - D7 RD0 - RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and
+5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: GLCD3.C
**/

// Radius of the circles unsignedconst char radius = 4;

// STRT button at RC0 sbit STRT at RC0_bit;

// Glcd module connections

Figure 12.19 Program listing of the project

364 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//
// This function generates a pseudorandon integer number between 1 and Lim. A seed
// is given to the generator to start with
//
unsigned char RandomNumber(int Lim, int Y)
{

unsigned char Result;
static unsigned int Y;

 Y = (Y * 32719 + 3) % 32749;
 Result = ((Y % Lim) + 1);

return Result;
 }

//
// This function displays the background. The background consists of empty circles, organised
// as the faces of two real dices. When “offset” is 0, the first dice is drawn, and when offset is
// 65, the second dice face is drawn.
//
voidDisplayBackground(void)
{

unsigned char offset;

offset = 0;
do

 {
Glcd_Circle(15 + offset, 15, radius, 1);
Glcd_Circle(45 + offset, 15, radius, 1);
Glcd_Circle(15 + offset, 30, radius, 1);
Glcd_Circle(30 + offset, 30, radius, 1);
Glcd_Circle(45 + offset, 30, radius, 1);
Glcd_Circle(15 + offset, 45, radius, 1);
Glcd_Circle(45 + offset, 45, radius, 1);
offset = offset + 65;

Figure 12.19 (Continued)

Graphics LCD Projects 365

www.it-ebooks.info

http://www.it-ebooks.info/

}while(offset == 65);
}

//
// This function fills the appropriate circle so that the required dice number is displayed as
// the faces of real dices. “N” is the number to be displayed, “offset” determines whether
// the first or the second dice number is to be displayed. When “offset” is 0, the first dice
// number is displayed, and when “offset” is 65, the second dice number is displayed.
// “radius” is the radius of the circles in pixels. “mode” determines whether the circle should
// be filled in or not. When “mode” is 1 the circle is filled in to display a dot. When “mode” is
// 0, the circle is blank. This mode is used when it is required to clear a dice number (i.e. to
// clear the dots)
//
void DisplayDice(char N, char offset, char mode)
{

switch(N)
 {

// Dice number 1 case 1:
Glcd_Circle_Fill(30 + offset, 30, radius, mode);
break;

// Dice number 2 case 2:
Glcd_Circle_Fill(15 + offset, 30, radius, mode);
Glcd_Circle_Fill(45 + offset, 30, radius, mode);
break;

// Dice number 3 case 3:
Glcd_Circle_Fill(15 + offset, 30, radius, mode);
Glcd_Circle_Fill(30 + offset, 30, radius, mode);
Glcd_Circle_Fill(45 + offset, 30, radius, mode);
break;

// Dice number 4 case 4:
Glcd_Circle_Fill(15 + offset, 15, radius, mode);
Glcd_Circle_Fill(45 + offset, 15, radius, mode);
Glcd_Circle_Fill(15 + offset, 45, radius, mode);
Glcd_Circle_Fill(45 + offset, 45, radius, mode);
break;

// Dice number 5 case 5:
Glcd_Circle_Fill(15 + offset, 15, radius, mode);
Glcd_Circle_Fill(45 + offset, 15, radius, mode);
Glcd_Circle_Fill(15 + offset, 45, radius, mode);
Glcd_Circle_Fill(45 + offset, 45, radius, mode);
Glcd_Circle_Fill(30 + offset, 30, radius, mode);
break;

// Dice number 6 case 6:
Glcd_Circle_Fill(15 + offset, 15, radius, mode);
Glcd_Circle_Fill(45 + offset, 15, radius, mode);
Glcd_Circle_Fill(15 + offset, 30, radius, mode);
Glcd_Circle_Fill(45 + offset, 30, radius, mode);
Glcd_Circle_Fill(15 + offset, 45, radius, mode);
Glcd_Circle_Fill(45 + offset, 45, radius, mode);
break;

Figure 12.19 (Continued)

366 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

//
// Start of main program
//
void main()
{

unsigned char Num1, Num2;
unsigned char seed = 1;

// Configure PORT B as digital ANSELB = 0;
// Configure PORT C as digital ANSELC = 0;
// Configure PORT D as digital ANSELD = 0;
// PORT B is output TRISB = 0;
// RC0 is input TRISC = 1;

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);

// DO FOREVER for(;;)
 {

DisplayBackground(); // Display background (empty circles)
while(STRT == 1); // Wait until STRT is pressed

// Generate first dice number Num1 = RandomNumber(6, seed);
// Generate second dice number Num2 = RandomNumber(6, seed);
// Display first dice number DisplayDice(Num1, 0, 1);
// Display second dice number DisplayDice(Num2, 65, 1);
// Wait 5 seconds Delay_Ms(5000);
// Empty the circles for first dice DisplayDice(Num1, 0, 0);
// Empty the circles for second dice DisplayDice(Num2, 65, 0);

 }
}

Figure 12.19 (Continued)

Figure 12.20 A typical display

Graphics LCD Projects 367

www.it-ebooks.info

http://www.it-ebooks.info/

/***
GLCD DICE
=========

This project shows how two dice faces can be imitated on a GLCD. A STRT button is used in the
project. The program waits until the STRT button is pressed. When the button is pressed, two
random numbers are generated between 1 and 6 and these numbers are shown on the GLCD
GLCD in the form of dice faces. The dots on a real dice are imitated with circles on the GLCD.
Circles are filled-in to represent the dice number thrown.

The two dice faces are organised as follows on the GLCD:

o o o o
o o o o o o
o o o o

The x co-ordinates of the two dices are separated by 65 pixels. The radius of each circle is
chosen as 4 pixels.

The dice numbers are displayed for 5 seconds, and after this time the GLCD screen is cleared
to indicate that the user can press the STRT button to create two new numbers.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 - D7 RD0 - RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and
+5V supply.

In this modified version of the program texts are added to the display to make it more user
Friendly.

Author: Dogan Ibrahim
Date: December, 2011
File: GLCD4.C
**/

// Radius of the circles unsignedconst char radius = 4;

Figure 12.21 Program listing

368 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

// STRT button at RC0 sbit STRT at RC0_bit;

// Glcd module connections
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//
// This function generates a pseudorandon integer number between 1 and Lim. A seed
// is given to the generator to start with
//
unsigned char RandomNumber(int Lim, int Y)
{

unsigned char Result;
static unsigned int Y;

 Y = (Y * 32719 + 3) % 32749;
 Result = ((Y % Lim) + 1);

return Result;
 }

//
// This function displays the background. The background consists of empty circles, organised
// as the faces of two real dices. When “offset” is 0, the first dice is drawn, and when offset is
// 65, the second dice face is drawn.
//
voidDisplayBackground(void)
{

unsigned char offset;

offset = 0;
do

 {
Glcd_Circle(15 + offset, 15, radius, 1);
Glcd_Circle(45 + offset, 15, radius, 1);
Glcd_Circle(15 + offset, 30, radius, 1);
Glcd_Circle(30 + offset, 30, radius, 1);
Glcd_Circle(45 + offset, 30, radius, 1);

Figure 12.21 (Continued)

Graphics LCD Projects 369

www.it-ebooks.info

http://www.it-ebooks.info/

Glcd_Circle(15 + offset, 45, radius, 1);
Glcd_Circle(45 + offset, 45, radius, 1);
offset = offset + 65;

}while(offset == 65);
}

//
// This function fills the appropriate circle so that the required dice number is displayed as
// the faces of real dices. “N” is the number to be displayed, “offset” determines whether
// the first or the second dice number is to be displayed. When “offset” is 0, the first dice
// number is displayed, and when “offset” is 65, the second dice number is displayed.
// “radius” is the radius of the circles in pixels. “mode” determines whether the circle should
// be filled in or not. When “mode” is 1 the circle is filled in to display a dot. When “mode” is
// 0, the circle is blank. This mode is used when it is required to clear a dice number (i.e. to
// clear the dots)
//
voidDisplayDice(char N, char offset, char mode)
{

switch(N)
 {

// Dice number 1 case 1:
Glcd_Circle_Fill(30 + offset, 30, radius, mode);
break;

// Dice number 2 case 2:
Glcd_Circle_Fill(15 + offset, 30, radius, mode);
Glcd_Circle_Fill(45 + offset, 30, radius, mode);
break;

// Dice number 3 case 3:
Glcd_Circle_Fill(15 + offset, 30, radius, mode);
Glcd_Circle_Fill(30 + offset, 30, radius, mode);
Glcd_Circle_Fill(45 + offset, 30, radius, mode);
break;

// Dice number 4 case 4:
Glcd_Circle_Fill(15 + offset, 15, radius, mode);
Glcd_Circle_Fill(45 + offset, 15, radius, mode);
Glcd_Circle_Fill(15 + offset, 45, radius, mode);
Glcd_Circle_Fill(45 + offset, 45, radius, mode);
break;

// Dice number 5 case 5:
Glcd_Circle_Fill(15 + offset, 15, radius, mode);
Glcd_Circle_Fill(45 + offset, 15, radius, mode);
Glcd_Circle_Fill(15 + offset, 45, radius, mode);
Glcd_Circle_Fill(45 + offset, 45, radius, mode);
Glcd_Circle_Fill(30 + offset, 30, radius, mode);
break;

// Dice number 6 case 6:
Glcd_Circle_Fill(15 + offset, 15, radius, mode);
Glcd_Circle_Fill(45 + offset, 15, radius, mode);
Glcd_Circle_Fill(15 + offset, 30, radius, mode);
Glcd_Circle_Fill(45 + offset, 30, radius, mode);

Figure 12.21 (Continued)

370 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12.22 shows the GLCD screen before the STRT button is pressed. Figure 12.23

shows the screen after the STRT button is pressed, when two new dice numbers are gener-

ated with the modified program.

Note: The modified program generates a hex code over 2 KB, and thus the Demo ver-
sion of the mikroC Pro for PIC compiler cannot be used to compile this program.

Glcd_Circle_Fill(15 + offset, 45, radius, mode);
Glcd_Circle_Fill(45 + offset, 45, radius, mode);
break;

}
}

//
// Start of main program
//
void main()
{

unsigned char Num1, Num2, n1, n2;
unsigned char seed = 1;

// Configure PORT B as digital ANSELB = 0;
// Configure PORT C as digital ANSELC = 0;
// Configure PORT D as digital ANSELD = 0;
// PORT B is output TRISB = 0;
// RC0 is input TRISC = 1;

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);

// DO FOREVER for(;;)
 {

DisplayBackground(); // Display background (empty circles)
// Display text before starting Glcd_Write_Text("Start...", 40, 0, 1);

while(STRT == 1); // Wait until STRT is pressed

Glcd_Write_Text("Good Luck", 40, 0, 1); // Display text after starting
// Generate first dice number Num1 = RandomNumber(6, seed);
// Generate second dice number Num2 = RandomNumber(6, seed);
// Display first dice number DisplayDice(Num1, 0, 1);
// Display second dice number DisplayDice(Num2, 65, 1);
// Convert to character n1 = Num1 + '0';
// Convert to character n2 = Num2 + '0';
// Display dice number under dice 1 Glcd_Write_Char(n1, 27, 7, 1);
// Display dice number under dice 2 Glcd_Write_Char(n2, 92, 7, 1);
 // Wait 5 seconds Delay_Ms(5000);
// Empty the circles for first dice DisplayDice(Num1, 0, 0);
// Empty the circles for second dice DisplayDice(Num2, 65, 0);
// Clear text “Good Luck” Glcd_Write_Text(" ", 40, 0, 1);

Glcd_Write_Char(' ', 27, 7, 1); // Clear number under dice 1
Glcd_Write_Char(' ', 92, 7, 1); // Clear number under dice 2

 }
}

Figure 12.21 (Continued)

Graphics LCD Projects 371

www.it-ebooks.info

http://www.it-ebooks.info/

12.4 PROJECT 12.4 – GLCD X-Y Plotting

12.4.1 Project Description

This project will demonstrate how the graph of a function can be plotted on the GLCD. In this

project, the graph of y¼ x2 � 1 is plotted as an example, with x varying between�2 andþ2.

The mid-point of the GLCD screen is taken as the co-ordinate centre point of the X-Yaxis,

and the two axes are drawn from this point, as shown in Figure 12.24, that is the GLCD co-

ordinate (63,31) is taken to be the (0,0) co-ordinate point of our axes. The X-axis is the hori-

zontal axis extending from left to right. Similarly, the Y-axis is the vertical axis extending

from bottom to top.

Figure 12.22 Before pressing the STRT button

Figure 12.23 After pressing the STRT button

372 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.4.2 Block Diagram

The block diagram of the project is as shown in Figure 12.5.

12.4.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 12.6.

12.4.4 Project PDL

The PDL of this project is given in Figure 12.25.

Figure 12.24 The GLCD screen co-ordinates and X-Y co-ordinates

BEGIN
Define connections between the GLCD and the microcontroller
Configure PORT B and PORT D as digital
Configure PORT B and PORT D as output
Initialise GLCD
Clear GLCD
Store the X and corresponding Y values of the function in arrays
CALLPlotXY to plot the graph

END

BEGIN/PlotXY
Draw X and Y axes
Draw tick points on axes
Find the maximum and minimum X and Y values
DO for all points

Calculate screen X co-ordinate
Calculate screen Y co-ordinate
Plot the graph by enabling pixels at screen X and Y co-ordinates

ENDDO
END/PlotXY

Figure 12.25 PDL of the project

Graphics LCD Projects 373

www.it-ebooks.info

http://www.it-ebooks.info/

12.4.5 Project Program

Figure 12.26 shows the program listing (GLCD5.C) of the project. At the beginning of the

program, the connection between the microcontroller and the GLCD are defined using sbit

statements. The GLCD is connected to ports B and D of the microcontroller and thus both of

these ports are configured as digital I/O ports using ANSEL statements. The GLCD library is

then initialised using the Glcd_Init function. This function must be called before calling to

any other GLCD function. The GLCD screen is then cleared using the Glcd_Fill(0�0),

which turns OFF all pixels of the GLCD.

The starting and ending x values are stored in variables starting_x and ending_x, respec-

tively. The program then calculates the Y values of the function for the given X values. A

total of 100 points are considered in this example. The graph of the function is drawn by

calling function PlotXY. The X and Y values of the function, and the total number of points

are entered as the arguments of the function.

Function PlotXY is where the actual graph is drawn. First, the X and Y axes and the axis

ticks are drawn using GLCD functions Glcd_Line and Glcd_Dot statements, respectively.

The axes are drawn, as shown in Figure 12.24. The function then calculates the maximum

and minimum X and Y values of the function, so that the screen co-ordinates can be scaled

correctly. The actual graph plotting is done in a for loop, where the X and Y points are

plotted as dots, using the GLCD function Glcd_Dot. The X and Y co-ordinates the points to

be plotted are calculated as

Xpos ¼ 63:0þ X½i� � 63:0=Xmax;
Ypos ¼ 31:0� Y½i� � 31:0=Ymax;

ð12:1Þ

where Xpos and Ypos are the X and Y co-ordinates of points, respectively, arrays X[i] and

Y[i] store the X and corresponding Y values, respectively, and Xmax and Ymax are the

maximum X and Y values of all the points.

Figure 12.27 shows the graph of y¼ x2 � 1 plotted on the GLCD.

12.5 PROJECT 12.5 – Plotting Temperature Variation on the GLCD

12.5.1 Project Description

This project demonstrates how the ambient temperature can be measured and then plotted in

real-time on the GLCD. The temperature is measured every second using an LM35DZ type

analogue sensor and is then plotted in real-time on the GLCD.

The x and y axes are drawn on the GLCD, the axes ticks are displayed, and the Y axis is

labelled, as shown in Figure 12.28. The Y axis is the temperature, and the X axis is the time

where every pixel corresponds to 1 second in real-time.

12.5.2 Block Diagram

The block diagram of the project is shown in Figure 12.29.

374 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/**
GLCD X-Y GRAPH PLOTTING
=======================

This project shows how an X-Y graph can be plotted on the GLCD screen. In this project the
function of y = x*x - 1 is plotted within the region x = -2 and x = 2.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 - D7 RD0 - RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to pin
Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and +5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: GLCD5.C
**/

// Glcd module connections
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//

Figure 12.26 Program listing of the project

Graphics LCD Projects 375

www.it-ebooks.info

http://www.it-ebooks.info/

12.5.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 12.30. The LM35DZ temperature

sensor is connected to analogue port RA0 (or AN0) of the microcontroller. This is a 3-pin

// This function draws the actual graph on the LCD. First, the X and Y axis are drawn and
// the axes ticks are displayed. Then, the maximum and minimum values of the data
// points are calculated so that the screen can be scaled correctly. Then, the data points
// are plotted by placing “dots” at their co-ordinates
//
void PlotXY(float X[], float Y[], unsigned char N)
{

unsigned char i;
float Xmax, Ymax, Xpos, Ypos,Xmin,Ymin;

// Draw Y axis Glcd_Line(63, 0, 63, 63, 1);
// Draw X axis Glcd_Line(0, 31, 127, 31, 1);
// Display x axis ticks for(i=0; i<127; i += 9)Glcd_Dot(i, 32, 1);
// Display y axis ticks for(i=0; i<63; i += 9)Glcd_Dot(64, i, 1);

//
// Find the maximum values Xmax, Ymax and minimum values Xmin and Ymin
//

// Assume 0 to start with Xmax = 0;
// Assume 0 to start with Ymax = 0;
// Assume 0 to start with Xmin=0;
// Assume 0 t start with Ymin=0;

for(i = 0; i<= N; i++) // Do for all points
 {

if(X[i] >Xmax)Xmax = X[i];
if(Y[i] >Ymax)Ymax = Y[i];
if(X[i] <Xmin)Xmin = X[i];
if(Y[i] <Ymin)Ymin = Y[i];

 }

Xmax=fabs(Xmax); // Find the absolute value
// Find the absolute value Ymax = fabs(Ymax);
// Find the absolute value Xmin=fabs(Xmin);
// Find the absolute value Ymin=fabs(Ymin);

if(Xmax<Xmin)Xmax = Xmin;
if(Ymax<Ymin)Ymax = Ymin;

//
// Now plot the graph. The graph is plotted by first calculating the screen co-ordinates
// of the X and Y points. Then, GLCD function Glcd_Dot is used to place a pixel at these
// data points
//

for(i = 0; i<= N; i++)
 {

// Calculate x co-ordinates Xpos = 63.0 + X[i]*63.0 / Xmax;
// Calculate y co-ordinates Ypos = 31.0 - Y[i]*31.0 / Ymax;
// Plot the graph Glcd_Dot(Xpos, Ypos, 1);

 }
}

Figure 12.26 (Continued)

376 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

analogue temperature sensor integrated circuit. Two of the pins are connected to þ5V and

ground, where the third pin is the output. This sensor provides an output voltage directly

proportional to the measured temperature. The output of the sensor is given by

Vo ¼ 10 mV=�C ð12:2Þ
Thus, for example at 10�C the output is 100 mV, at 25�C the output is 250 mV, and so on.

PORT B and PORT D are connected to the GLCD as before.

//
// Start of main program
//
void main()
{

floatXvalues[101], Yvalues[101], stp, x, starting_x, ending_x;
unsigned char N , i;

// Configure PORT B as digital ANSELB = 0;
// Configure PORT D as digital ANSELD = 0;
// PORT B is output TRISB = 0;
// PORT D is output TRISD = 0;

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);

//
// N is the total number of points considered. stp is the step in x value
//

// No of points N = 100;
// Starting X value starting_x = -2.0;
// Ending X value ending_x = 2.0;

stp = fabs((starting_x - ending_x)) / N; // Step in x

// Starting X value x = starting_x;
i = 0;

//
// Find the Y values of the function for given X values and store these values in arrays
// Yvalues and Xvalues respectively
//

do
{

Xvalues[i] = x; // X values of the function
// Calculate Y yalues of the function Yvalues[i] = x*x -1;
// step in x x = x + stp;
// Next point i++;
// Do for all points }while(i != N+1);

// Plot the graph PlotXY(Xvalues, Yvalues, N);

while(1); // End of program, wait here forever
}

Figure 12.26 (Continued)

Graphics LCD Projects 377

www.it-ebooks.info

http://www.it-ebooks.info/

12.5.4 Project PDL

The PDL of this project is given in Figure 12.31.

12.5.5 Project Program

The A/D converter on the PIC18F45K22 microcontroller is 10-bits wide. Thus, with a þ5V

reference voltage, the resolution will be 5000/1024 or 4.88mV, which is accurate enough to

measure the temperature to an accuracy of 0.5�C.
Figure 12.32 shows the program listing (GLCD6.C) of the project. At the beginning of

the program, the connections between the microcontroller and the GLCD are defined

Figure 12.27 Graph of y ¼ x2 � 1 plotted on the screen

Figure 12.28 Layout of the screen

378 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

using sbit statements. The GLCD is connected to ports B and D of the microcontroller

and thus both of these ports are configured as digital output ports using ANSEL

and TRIS statements. PORT A is configured as analogue, with pin RA0 (or AN0) being

configured as an input.

Figure 12.29 Block diagram of the project

Figure 12.30 Circuit diagram of the project

Graphics LCD Projects 379

www.it-ebooks.info

http://www.it-ebooks.info/

The GLCD library is then initialised using the Glcd_Init function. This function must be

called before calling to any other GLCD function. The GLCD screen is then cleared using

the Glcd_Fill(0�0), which turns OFF all pixels of the GLCD.

The A/D converter is initialised by calling library function ADC_Init. The background of

the display is drawn by calling function PlotAxis. This function draws the X and Yaxes. The

bottom left part of the screen with co-ordinates (12,60) is taken as the (0,0) co-ordinate of

our display. Then, ticks are placed on both the X and the Y axes using Glcd_Dot statements.

The Y axis is labelled from 10 to 30�C in steps of 5�C, using the Glcd_Write_Text_Adv

statements.

The program then enters an endless loop formed by a for statement. Inside this loop, the

analogue temperature is converted into digital and stored in variable T by calling function

ADC_Get_Sample with the channel number specified as 0 (RA0 or AN0). This digital value

is converted into millivolts by multiplying with 5000 and dividing by 1024. The actual tem-

perature in �C is calculated by dividing the voltage in millivolts by 10 (Vo¼ 10mV/�C).
The graph is drawn using the GLCD function Glcd_Line. This function draws a line

between the specified starting and ending X and Y co-ordinates. Variables old_x, old_y,

new_x, and new_y are used to store the old and the new (current) X and Y values of the

temperature, respectively. At the first iteration, the old and the current values are assumed to

BEGIN
Define the connection between the LCD and the microcontroller
Configure PORT B and PORT D as digital output
Configure PORT A as analog input
Initialise GLCD
Clear GLCD
Initialise A/D converter
CALL PlotAxis
DO FOREVER

Read analog temperature from Channel 0
Convert into millivolts
Convert into Degrees centigrade
Calculate the Y co-ordinate based on temperature reading
CALL PlotXY to plot the temperature
Wait 1 second

ENDDO
END

BEGIN/PlotAxis
Draw X and Y axes
Draw axes ticks
Draw Y axis labels

END/PlotAxis

BEGIN/PlotXY
Draw a line to join previous and current temperature values
Update the previous X and Y values with current values

END/PlotXY

Figure 12.31 PDL of the project

380 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/***
GLCD TEMPERATURE PLOTTING IN REAL-TIME
======================================

This project shows how the temperature can be read from an analog temperature sensor and then
plotted on the GLCD.

In this project an LM35DZ type analog temperature sensor is used. This sensor has 3 pins: The
ground, power supply (+5V), and the output pin. The sensor gives an output voltage which is
directly proportional to the measured temperature. i.e. V o = 10mV/C. Thus, for example at
15C the output voltage is 150mV. Similarly, at 30C the output voltage is 300mV and so on.

The temperature sensor is connected to analog input RA0 (or AN0) of a PIC18F45K22 type
microcontroller. The microcontroller is operated from an 8MHz crystal. The GLCD used in the
project is based on KS0107/108 type controller with 128x64 pixels.

The program first draws the X and Y axes, axes ticks, and the Y axis labels. Then, the temperature
is read from Channel 0 (RA0 or AN0), converted into digital, and then into Degrees C. The
temperature is plotted in real-time every second. i.e. the horizontal axis is the time where each
pixel corresponds to 1 second.

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 - D7 RD0 - RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and
+5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: GLCD6.C
***/

unsigned char stp, old_x, old_y, new_x, new_y;

// Glcd module connections
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;

Figure 12.32 Program listing of the project

Graphics LCD Projects 381

www.it-ebooks.info

http://www.it-ebooks.info/

sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direc�on at TRISB0_bit;
sbit GLCD_CS2_Direc�on at TRISB1_bit;
sbit GLCD_RS_Direc�on at TRISB2_bit;
sbit GLCD_RW_Direc�on at TRISB3_bit;
sbit GLCD_EN_Direc�on at TRISB4_bit;
sbit GLCD_RST_Direc�on at TRISB5_bit;
// End Glcd module connec�ons

//
// This func�on plots the X and Y axis. The origin is set at screen co-ordinates (12,60).
// First the two axes are drawn. Then the axes �cks are displayed for both X and Y axis.
// Finally, the Y axis labels are displayed (i.e. the temperature labels)
//
void PlotAxis()
{

unsigned char i;

// Draw Y axis Glcd_Line(12, 0, 12, 60, 1);
// Draw X axis Glcd_Line(12, 60, 127, 60, 1);
// Display x axis �cks for(i=12; i<127; i += 9)Glcd_Dot(i, 61, 1);
// Display y axis �cks for(i=0; i<60; i += 10)Glcd_Dot(11, i, 1);
// Y axis label Glcd_Write_Text_Adv("30",0,5);
// Y axis label Glcd_Write_Text_Adv("25",0,15);
// Y axis label Glcd_Write_Text_Adv("20",0,25);
// Y axis label Glcd_Write_Text_Adv("15",0,35);
// Y axis label Glcd_Write_Text_Adv("10",0,45);

}

//
// This func�on plots the temperature in real-�me. The temperature is plo�ed by joining
// the data points with straight lines. The X axis is the �me where each pixel corresponds
// to one second. The Y axis is the temperature in Degrees C
//
void PlotXY(float Temperature)
{

// Draw temperature changes Glcd_Line(old_x,old_y,new_x,new_y,1);
// Update old points old_x = new_x;

old_y = new_y;
}

//
// Start of main program
//
void main()
{

unsignedint T;

Figure 12.32 (Continued)

382 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

be the same and this is identified by the variable flag being cleared to 0. In all other iterations,

variable flag is 1 and the else part of the if statement is executed. The X value is incremented

by 1 to correspond to the next second and the new Y value is updated.

The Y co-ordinate (temperature) is calculated as follows:

The relationship between the Y axis ticks and the Y co-ordinates of data values can be

derived from the following:

Yaxis ticks pixel co-ordinates Yaxis data co-ordinate (�C)

10 30

20 25

30 20

40 15

50 10

unsigned char flag = 0;
float mV, C;

// Configure PORT A as analog ANSELA = 1;
// Configure PORT B as digital ANSELB = 0;
// Configure PORT D as digital ANSELD = 0;
// RA0 is input (analog) TRISA = 1;
// PORT B is output TRISB = 0;
// PORT D is output TRISD = 0;

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);
// Initialise ADC ADC_Init();
// Plot X-Y axes and labels PlotAxis();

// DO FOREVER for(;;)
{

// Read temperature from channel 0 T = ADC_Get_Sample(0);
// Temperature in mV mV = T*5000.0/1024.0;
// Temperature in Degrees C C = mV /10.0;

// If first time if(flag == 0)
{

// Start from x = 12 new_x = 12;
old_x = new_x;

// New temperature value new_y = -2*C+70;
old_y = new_y;

// Set so that not first time flag = 1;
}

// Not first time else
{

// Increment x by 1 (1 second each pixel) new_x++;
// New temperature value new_y = -2*C+70;

}
// Plot the graph PlotXY(C);
// Wait one second Delay_Ms(1000);

}
}

Figure 12.32 (Continued)

Graphics LCD Projects 383

www.it-ebooks.info

http://www.it-ebooks.info/

The above relationship is linear and is the form of a straight line y¼mx þ C, where m is the

slope of the line and C is the point where the line crosses the Yaxis. The equation of this line

can be found from

y� y1 ¼ mðx� x1Þ ð12:3Þ

where m ¼ (y2 � y1)/(x2 � x1)

By taking any two points on the line, we can easily find the equation. Considering the

points:

ðx1; y1Þ ¼ ð30; 10Þ and ðx2; y2Þ ¼ ð10; 50Þ ð12:4Þ

The relationship is found to be:

y ¼ �2xþ 70 ð12:5Þ

Therefore, given the temperature C in degrees, the y co-ordinate to be used for plotting can

be calculated from

new y ¼ �2�Cþ 70 ð12:6Þ

After plotting a point, the new_x and new_y are copied to old_x and old_y, respectively,

ready for the next sample to be plotted.

Figure 12.33 shows a typical display of the temperature in real-time.

12.5.6 Suggestion for Modification

The temperature measurement can be made more accurate by using a lower reference voltage

for the A/D converter. For example, if a þ3V reference voltage is used instead of the þ5V,

Figure 12.33 Typical display of the temperature

384 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

then the resolution of the A/D converter will be 3000/1024 ¼ 2.92mV instead of the 4.88

mVused in the project.

12.6 PROJECT 12.6 – Temperature and Relative Humidity
Measurement

12.6.1 Project Description

This project demonstrates how the ambient temperature and relative humidity can be meas-

ured and then displayed on the GLCD.

In this project, the SHT11 relative humidity and temperature sensor chip is used. This is a

tiny 8-pin chip with dimensions 4.93 � 7.47 mm and thickness 2.6 mm, manufactured by

Sensirion (http://www.sensirion.com). A capacitive sensor element is used to measure the

relative humidity, while the temperature is measured by a band-gap sensor. A calibrated digi-

tal output is given for ease of connection to a microcontroller. The relative humidity is meas-

ured with an accuracy of �4.5%RH and the temperature accuracy is �0.5�C. Operating
voltage ranges from a minimum of þ2.4V to a maximum of þ5.5V.

Figure 12.34 shows a picture of the SHT11 sensor. The sensor is available as a small PCB

that can be plugged into a development board (e.g. EasyPIC 7) for ease of use.

The pin configuration of the sensor is as follows:

Pin 1: Gnd pin.

Pin 2: The Data pin. This pin is used to transfer data in and out of the sensor. When sensing a

command to the sensor, the data is valid on the rising edge of the clock input (SCK). When

reading data from the sensor, data is valid 200 ns after the clock goes low and remains

valid until the next clock.

Pin 3: The Clock pin. This pin is used to synchronise the chip with the microcontroller dur-

ing command and data transfers.

Pin 4: VDD pin.

Figure 12.34 The SHT11 sensor

Graphics LCD Projects 385

www.it-ebooks.info

http://www.it-ebooks.info/

As shown in Figure 12.35, the SHT11 sensor is connected to a microcontroller using only

two pins. The data pin should be pulled up to the supply voltage using a 10 KB resistor. It is

recommended to use a 100 nF decoupling capacitor between pin 4 and ground.

12.7 Operation of the SHT11

The SHT11 is based on serial communication where data is clocked in and out, in synchroni-

sation with the SCK clock. The communication between the SHT11 and a microcontroller

consists of the following protocols (see the SHT11 data sheet for more detailed information).

12.7.1 RESET

At the beginning of data transmission, it is recommended to send a RESET to the SHT11,

just in case the communication with the device is lost. This signal consists of sending 9 or

more SCK signals while the DATA line is HIGH. Then, a Transmission-Start-Sequence must

be sent. Figure 12.36 shows the RESET sequence.

The C code to implement the RESET sequence as a function is given below (SDA and

SCK are the DATA and SCK lines, respectively). Notice that the manufacturer’s data sheet

Figure 12.36 The SHT11 RESET sequence

Figure 12.35 Connection of SHT11 to a microcontroller

386 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

specifies that after the SCK changes state it must remain in its new state for a minimum of

100 ns. Here, a delay of 1 ms is introduced between each SCK state change:

void Reset_Sequence()

{

SCK = 0; // SCK low

SDA_Direction = 1; // Define SDA as input so that the SDA line becomes HIGH

for (j = 0; j < 10; j++) // Repeat 10 times

{

SCK = 1; // send 10 clocks on SCK line with 1us delay

Delay_us(1); // 1us delay

SCK = 0; // SCK is LOW

Delay_us(1); // 1us delay

}

Transmission_Start_Sequence(); // Send Transmission-start-sequence

}

Notice that when the direction of a port pin is set to 1 (i.e. when in input mode), the port

pin presents itself as a logic HIGH.

12.7.2 Transmission-Start-Sequence

Before a temperature or relative humidity conversion command is sent to the SHT11, the

transmission-start-sequence must be sent. This sequence consists of lowering the DATA line

while SCK is HIGH, followed by a pulse on SCK and rising DATA again while SCK is still

HIGH. Figure 12.37 shows the transmission-start-sequence.

The C code to implement the transmission-start-sequence is given below:

void Transmission_Start_Sequence()

{

SDA_Direction = 1; // Set SDA HIGH

SCK = 1; // SCK HIGH

Delay_us(1); // 1 us delay

SDA_Direction = 0; // SDA as output

SDA = 0; // Set SDA LOW

Delay_us(1); // 1us delay

SCK = 0; // SCK LOW

Delay_us(1); // 1us delay

SCK = 1; // SCK HIGH

Delay_us(1); // 1 us delay

SDA_Direction = 1; // Set SDA HIGH

Delay_us(1); // 1us delay

SCK = 0; // SCK LOW

}

Graphics LCD Projects 387

www.it-ebooks.info

http://www.it-ebooks.info/

12.7.3 Conversion Command

After sending the transmission-start-sequence, the device is ready to receive a conversion

command. This consists of 3 address bits (only ‘000’ is supported) followed by 5 command

bits. The list of valid commands is shown in Table 12.1. For example, the commands for

relative humidity and temperature are ‘00000101’ and ‘00000011’, respectively. After issu-

ing a measurement command, the sensor sends an ACK pulse on the falling edge of the 8th

SCK pulse. The ACK pulse is identified by the DATA line going LOW. The DATA line

remains LOW until the 9th SCK pulse going LOW. The microcontroller then has to wait for

the measurement to complete. This can take up to 320 ms. During this time, it is recom-

mended to stop generating clocks on the SCK line and release the DATA line. When the

measurement is complete, the sensor pulls the DATA line LOW to indicate that the data is

ready. At this point, the microcontroller can restart the clock on the SCK line to read the

measured data. Notice that the data is kept in the SHT11 internal memory until it is read out

by the microcontroller.

The data readout consists of 2 bytes of data and 1 byte of CRC checksum. The checksum

is optional and if not used the microcontroller may terminate the communication by keeping

the DATA line HIGH after receiving the last bit of the data (LSB). The data bytes are trans-

ferred with MSB first and are right-justified. The measurement can be for 8, 12 or 14 bits

wide. Thus, the 5th SCK corresponds to the MSB data for 12-bit operation. For 8-bit mea-

surement, the first byte is not used. The microcontroller must acknowledge each byte by pull-

ing the DATA line LOW, and sending a SCK pulse. The device returns to sleep mode after all

the data has been read out.

Table 12.1 List of valid commands

Command Code

00011 Measure temperature

00101 Measure relative humidity

00111 Read Status register

00110 Write Status register

11110 Soft Reset (reset interface, clear Status register)

Figure 12.37 The transmission-start-sequence

388 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.8 Acknowledgement

After receiving a command from the microcontroller, the sensor issues an acknowledgement

pulse by pulling the DATA line LOW for one clock cycle. This takes place after the falling

edge of the 8th clock on the SCK line, and the DATA line is pulled LOW until the end of the

9th clock on the SCK line.

12.8.1 The Status Register

The Status register is an internal 8 bit register that controls some functions of the device,

such as selecting the measurement resolution, end of battery detection, and use of the

internal heater. In order to write a byte to the Status register, the microcontroller must

send the write command (‘00110’), followed by the data byte to be written. Note that the

sensor generates acknowledge signals in response to receiving both the command and the

data byte. Bit 0 of the Status register controls the resolution, such that when this bit is 1,

both the temperature resolution and the relative humidity resolution are 12 bits. When

this bit is 0, the temperature resolution is 14 bits and the relative humidity resolution is

12 bits.

The sensor includes an on-chip heating element that can be enabled by setting bit 2 of the

Status register. By using the heater, it is possible to increase the sensor temperature by 5 to

10 �C. The heater can be useful for analysing the effects of changing the temperature on

humidity. Notice that during temperature measurements, the sensor measures the tempera-

ture of the heated sensor element and not the ambient temperature.

The steps for reading the humidity and temperature are summarised below:

12.8.1.1 Humidity (assuming 12-bit operation with no CRC)

� Send Reset_Sequence.
� Send Transmission_start_sequence.
� Send ‘00000101’ to convert relative humidity.
� Receive ACK from sensor on 8th SCK pulse going LOW. The ACK is identified by the

sensor lowering the DATA line.
� Wait for the measurement to be complete (up to 320 ms), or until DATA line is LOW.
� Ignore first 4 SCK pulses.
� Get the 4 upper nibble starting with the MSB bit.
� Send ACK to sensor at the end of 8th clock by lowering the DATA line and sending a pulse

on SCK.
� Receive low 8 bits.
� Ignore CRC by keeping the DATA line HIGH.
� Next measurement can start by repeating the above steps.

12.8.1.2 Temperature

The steps for reading the temperature are similar, except that the command ‘00000011’ is

sent instead of ‘00000101’

Graphics LCD Projects 389

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12.38 shows the timing diagram for reading the relative humidity with 12-bit reso-

lution and ignoring the CRC. In this figure, it is assumed that the sensor has already been

reset using the Reset_sequence.

12.8.2 Conversion of Signal Output

12.8.2.1 Relative Humidity Reading (SORH)

The humidity sensor is non-linear and it is necessary to perform a calculation to obtain the

correct reading. The manufacturer’s data sheet recommends the following formula for

the correction:

RHlinear ¼ C1 þ C2 þ SORH þ C3:SO
2
RHð%RHÞ ð12:7Þ

where SORH is the value read from the sensor and the coefficients are as given in Table 12.2.

For temperatures significantly different from the 25 �C, the manufacturers recommend

another correction to be applied to the relative humidity as

RHTRUE ¼ ðT� 25Þ:ðt1 þ t2:SORHÞ þ RHlinear ð12:8Þ

where T is the temperature in �C where the relative humidity reading is taken, and the coef-

ficients are as given in Table 12.3.

Table 12.2 Coefficients for the RH non-linearity correction

SORH C1 C2 C3

12 bit �2.0468 0.0367 �1.5955E-6

8 bit �2.0468 0.5872 �4.0845E-4

Figure 12.38 Reading the relative humidity with 12-bit resolution and no CRC

390 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.8.2.2 Temperature Reading (SOT)

The manufacturers recommend that the temperature reading of the SHT11 should be cor-

rected according to the following formula:

TTRUE ¼ d1 þ d2:SOT ð12:9Þ

where SOT is the value read from the sensor and the coefficients are as given in Table 12.4.

12.8.3 Block Diagram

The block diagram of the project is shown in Figure 12.39. A rectangle will be drawn on the

GLCD screen and the temperature and relative humidity will both be displayed, as shown in

the figure.

12.8.4 Circuit Diagram

The circuit diagram of the project is as shown in Figure 12.40. The SHT11 sensor is con-

nected to PORT C of a PIC18F45K22 type microcontroller. The DATA pin is connected to

RC4 and the SCK pin is connected to RC3. The DATA pin is pulled up using a 10KB resis-

tor, as recommended by the manufacturers. Also, a 100 nF decoupling capacitor is connected

between the VDD pin and the ground.

The project was tested using a plug-in SHT11 module (manufactured by mikroElektro-

nika) together with the EasyPIC 7 development board, where the module was connected

to the PORT C I/O plug located at the edge of the EasyPIC 7 development board (see

Figure 12.41).

Table 12.4 Coefficients for temperature correction

VDD d1 (
�C) d1 (

�F)

5 �40.1 �40.2

4 �39.8 �39.6

3.5 �39.7 �39.5

3 �39.6 �39.3

2.5 �39.4 �38.9

SOT D2(
�C) D2(

�F)
14 bit 0.01 0.018

12 bit 0.04 0.072

Table 12.3 Coefficients for RH temperature correction

SORH t1 t2

12 bit 0.01 0.00008

8 bit 0.01 0.00128

Graphics LCD Projects 391

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12.39 Block diagram of the project

Figure 12.40 Circuit diagram of the project

392 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

12.8.5 Project PDL

The PDL of this project is given in Figure 12.42.

12.8.6 Project Program

The program listing of the project is shown in Figure 12.43. At the beginning of the program,

the connections between the GLCD and the microcontroller are defined. Then, the connec-

tions between the SHT11 sensor and the microcontroller are defined. The temperature and

relative humidity correction coefficients are then given as floating point numbers.

The main program then configures PORT B, PORT C and PORT D as digital outputs,

initialises the GLCD, and clears the display. The GLCD font is set to large. The SHT11 data-

sheet recommends that no commands should be sent to the device for the first 20 ms after

power is applied to the device. This delay is implemented by function SHT11_StartupDelay.

The program then enters an endless loop formed with a for statement. Inside this loop, the

temperature is measured and corrected by calling function Measure with argument 3, and

stored in floating point variable Ttrue. Then, the relative humidity is read, corrected and

stored in floating point variable RHtrue. The measured values are converted into strings by

using built-in function FloatToStr. Finally, the degree symbol and letter ‘C’ are appended to

the temperature reading. Similarly, symbol ‘%’ is appended to the relative humidity reading

before it is displayed.

Figure 12.41 Using the SHT11 module with the EasyPIC 7 development board

Graphics LCD Projects 393

www.it-ebooks.info

http://www.it-ebooks.info/

BEGIN
Define the connections between the GLCD and microcontroller
Define the connections between the SHT11 and microcontroller
Define SHT11 correction coefficients
Configure PORTB, PORTC, PORTD as digital
Initialise GLCD
Clear display
Set large fonts for GLCD
CALL SHT11_Startup_Delay
DO FOREVER

CALL Measure to measure temperature
CALL Measure to measure relative humidity
Convert temperature to a string
Convert relative humidity to a string
Append degree symbol and letter “C” after the temperature value
Append % sign after the relative humidity value
Draw a rectangle on GLCD screen
Display temperature string
Display relative humidity string
Wait for 5 seconds

ENDDO
END

BEGIN/SHT11_Startup_Delay
Wait for 20ms

END/SHT11_Startup_Delay

BEGIN/Reset_Sequence
Implement SHT11 reset sequence

END/Reset_Seqeunce

BEGIN/Transmission_Start_Sequence
Implement SHT11 transmission_start_sequence

END/Transmission_Start_Sequence

BEGIN/Send_ACK
Send ACK signal to SHT11

END/Send_ACK

BEGIN/Measure

END/Measure

Get type of measurement required
Send Reset_Sequence
Send Transmission_Start_Sequence
Send address and temperature or humidity convert command to SHT11
Send SCK pulse for the ACK signal
Wait until measurement is ready (until DATA goes LOW)
Read 8 bit measurement data
Send ACK to SHT11
Read remaining 8 bits
Make corrections for temperature (or humidity)

Figure 12.42 PDL of the project

394 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/*==
TEMPERATURE AND RELATIVE HUMIDITY MEASUREMENT
===

This projects measures both the ambient temperature and the relative humidity and then
displays the readings on the GLCD.

The SHT11 single chip temperature and relative humidity sensor is used in this project. The
sensor is connected as follows to a PIC18F45K22 type microcontroller operating at 8 MHz:

 Sensor Microcontroller Port
 DATA RB0
 SCK RB1

A 10K pull-up resistor is used on the DATA pin. In addition, a 100nF decoupling capacitor is
used between the VDD and the GND pins. The sensor is operated from a +5V supply.

The connections between the GLCD and the microcontroller is as in the earlier GLCD based
projects. The GLCD brightness is adjusted using a 10K potentiometer.

Author: Dogan Ibrahim
File: GLCD7.C
Date: December 2011
===*/

// GlCD module connections
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;
sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//SHT11 connections
// SHT11 DATA pin sbit SHT11_SDA at RC4_bit;
// SHT11 SCK pin sbit SHT11_SCK at RC3_bit;

sbit SHT11_SDA_Direction at TRISC4_bit; // DATA pin direction
// SCK pin direction sbit SHT11_SCK_Direction at TRISC3_bit;

//

Figure 12.43 Program listing of the project

Graphics LCD Projects 395

www.it-ebooks.info

http://www.it-ebooks.info/

// SHT11 Constants for calculating humidity (in 12 bit mode)
//
const float C1 = -2.0468; // -2.0468

// 0.0367 const float C2 = 0.0367;
// -1.5955* 10^-6 const float C3 = -1.5955E-6;

//
// SHT11 Constants for relative humidity temperature correction (in 12 bit mode)
//

// 0.01 const float t1 = 0.01;
// 0.00008 const float t2 = 0.00008;

//
// SHT11 temperature conversion coefficients (14 bit mode)
//

// -40.1 const float d1 = -40.1;
// 0.01 const float d2 = 0.01;

unsigned char i, mode;
unsigned int buffer;
float Res, Ttrue, RHtrue;
char T[14], H[14];

//
// Function to send the Transmission_Start_Sequence
//
void Transmission_Start_Sequence(void)
{

// Set SDA as input SHT11_SDA_Direction = 1;
// SCK HIGH SHT11_SCK = 1;
// 1us delay Delay_us(1);
// Set SDA as output SHT11_SDA_Direction = 0;
// SDA LOW SHT11_SDA = 0;
// 1us delay Delay_us(1);
// SCK LOW SHT11_SCK = 0;
// 1us delay Delay_us(1);
// SCK HIGH SHT11_SCK = 1;
// 1us delay Delay_us(1);
// Set SDA as input SHT11_SDA_Direction = 1;
// 1us delay Delay_us(1);
// SCK low SHT11_SCK = 0;

}

//
// This function send the Reset_Sequence
//
void Reset_Sequence()
{

// SCL low SHT11_SCK = 0;
// define SDA as input SHT11_SDA_Direction = 1;
// repeat 10 times for (i = 1; i<= 10; i++)

Figure 12.43 (Continued)

396 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

{
// Send clock pulses SHT11_SCK = 1;

Delay_us(1);
SHT11_SCK = 0;
Delay_us(1);

}
Transmission_Start_Sequence();
}

//
// This function sends ACK
//
void Send_ACK()
{

// define SDA as output SHT11_SDA_Direction = 0;
// SDA low SHT11_SDA = 0;
// SCL high SHT11_SCK = 1;
// 1us delay Delay_us(1);
// SCL low SHT11_SCK = 0;
// 1us delay Delay_us(1);
// define SDA as input SHT11_SDA_Direction = 1;

}

//
// This function returns temperature or humidity depending on the argument
//
float Measure(unsigned char command)
{

// mode is 3 or 5 mode = command;
Reset_Sequence(); // Reset SHT11

// Start transmission sequence transmission Transmission_Start_Sequence();

// Set SDA as output SHT11_SDA_Direction = 0;
// Set SCK as LOW SHT11_SCK = 0;

//
// Send address and command to SHT11 sensor. A total of 8 bits are sent
//

for(i = 0; i< 8; i++) // Send address and command
 {

if (mode.F7 == 1)SHT11_SDA_Direction = 1; // if MSB (bit 7) is 1, Set SDA to 1
// if MSB is 0 else
// else MSB is 0 {
// define SDA as output SHT11_SDA_Direction = 0;
// Set SDA to 0 SHT11_SDA = 0;

 }
// 1us delay Delay_us(1);
// SCL high SHT11_SCK = 1;
// 1us delay Delay_us(1);
// SCL low SHT11_SCK = 0;

Figure 12.43 (Continued)

Graphics LCD Projects 397

www.it-ebooks.info

http://www.it-ebooks.info/

// move contents of j one place left mode = mode << 1;
 }
//
// Give a SCK pulse for the ACK
//

// Set SDA to input (to read ACK) SHT11_SDA_Direction = 1;
// SCL high SHT11_SCK = 1;
// 1us delay Delay_us(1);
// SCL low SHT11_SCK = 0;
// 1us delay Delay_us(1);

//
// Now wait until the measurement is ready (SDA goes LOW when data becomes ready)
//

while (SHT11_SDA == 1)Delay_us(1); // wit until SDA goes LOW
//
// Now, the data is ready, read the data as 2 bytes. Read all 16 bits even though the
// upper nibble may not be relevant
//
buffer = 0;

// DO 16 times for (i = 1; i <=16; i++)
{

// move contents of MSB one place left buffer = buffer << 1;
// SCK HIGH SHT11_SCK = 1;

if (SHT11_SDA == 1)buffer = buffer | 0x0001; // Get the bit as 1 (OR with existing data)
SHT11_SCK = 0;

// if counter i = 8 then send ACK if (i == 8)Send_ACK();
 }

//
// Now make the corrections to the measured value. If mode=3 then temperature, if on the
// other hand, mode=5 then relative humidity
//

// Temperature correction if(command == 0x03)
Res = d1 + d2*buffer;

// Relative humidity correction else if(command == 0x05)
{

Res = C1 + C2*buffer + C3*buffer*buffer;
Res = (Ttrue - 25)*(t1 + t2*buffer) + Res;

}
// Return temperature or humidity return Res;

}

//
// This is the SHT11 startup delay (20ms)
//
void SHT11_Startup_Delay()
{
Delay_ms(20);
}

Figure 12.43 (Continued)

398 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Function Measure is the most complicated function in the program. This function imple-

ments the measurement steps described earlier in the project. Argument command specifies

the type of measurement required: 3 for temperature measurement and 5 for relative humid-

ity measurement. After calling to functions Reset_Sequence and Transmission_Start_Se-

quence, the address and command is sent to the SHT11 device. Bits of mode (3 or 5) are sent

out through the MSB after shifting the data to the left in a loop. The program then waits until

the conversion is ready, which is indicated by the DATA line going LOW. Once the data is

ready, a loop is formed to read the two bytes from the sensor. At the end of the 8th clock

pulse, an ACK signal is sent to the sensor. In the last part of this function, depending upon

the type of conversion required, either the temperature or the relative humidity readings are

corrected and returned to the calling program.

The program repeats after a delay of 5 seconds.

//
// Start of MAIN program
//
void main()
{

// Configure PORT B as digital ANSELB = 0;
// Configure PORT C as digital ANSELC = 0;
// Configure PORT D as digital ANSELD = 0;

 TRISB = 0;
 TRISC = 0;

// SCL is output SHT11_SCK_Direction = 0;

// initialiseGLCD GLCD_Init();
// Clear GLCD Glcd_Fill(0);
// Set large fonts Glcd_Set_Font(Font_Glcd_Character8x7, 8, 7, 32);
// SHT11 startup delay SHT11_Startup_Delay();

// DO FOREVER for(;;)
 {

// define SCL1 as output SHT11_SCK_Direction = 0;
// Measure Temperature Ttrue = Measure(0x03);
// Measure Relative humidity RHtrue = Measure(0x05);
// define SCK as input SHT11_SCK_Direction = 1;

FloatToStr(Ttrue, T); // Convert temperature to string
FloatToStr(RHtrue, H); // Convert relative humidity to string

// Clear display Glcd_Fill(0);
// Insert Degree sign T[5] = 248;
// Insert C T[6] = 'C';
// Terminate with NULL T[7] = 0x0;
 // Insert % H[5] = '%';
// Terminate with NULL H[6]=0x0;
// Draw a rectangle Glcd_Rectangle(20, 8, 100, 45, 1);
// Display temperature Glcd_Write_Text(T, 30, 2, 1);
// Display Relative humidity Glcd_Write_Text(H, 30, 4, 1);
// Delay 5 seconds Delay_ms(5000);

 }
}

Figure 12.43 (Continued)

Graphics LCD Projects 399

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12.44 shows a typical display.

12.9 Summary

This chapter has described the design of microcontroller based projects using GLCDs. At the

beginning of the chapter, the creation and displaying of bitmap images are explained. It is

shown how easy it is to create a bitmap image using the Windows Paint program. Then, a

simple animation program is given, where a ball moves across the screen inside a rectangle

shape. More complex projects, such as a GLCD dice, and the plotting of X-Y graphics, are

given in later sections. The measurement and display of temperature is then given as a proj-

ect, where the temperature is plotted on the GLCD screen. Finally, a project is given, where

the ambient temperature and relative humidity are measured and displayed on the GLCD

screen.

Exercises

12.1 Use the Windows Paint program to create an image with dimensions 128� 64 pixels.

Show how you can display this image on the GLCD.

12.2 Explain how a bitmap image of any size can be converted into 128 � 64 pixels and

how it can be displayed on the GLCD.

12.3 Modify the moving ball animation program given in Figure 12.12, so that the ball

moves diagonally.

12.4 Write a program to plot the function y¼ 2x2 þx � 12, with x varying between �5

and þ5.

12.5 Write a program to plot the function y¼ 2xþ 4, with x varying between �1 and þ2.

Figure 12.44 A typical display

400 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

13

Touch Screen Graphics LCD
Projects

In this chapter we will look at the design of projects using graphics LCDs (GLCDs) with

touch screen panels. As in Chapter 12, the GLCDs used in the projects in this section are

128 � 64 pixel monochrome, 78 � 70 � 14.3 mm displays, based on the KS108/KS107

controller. A 4-wire resistive touch screen (model no: TTW4028001) is used in the proj-

ects. Two projects are given in this chapter. The first project is simple and shows how the

touch screen can be utilised to turn an LED ON and OFF. The second project is more

complicated and shows how to flash an LED at a rate chosen by the user by touching

the screen.

13.1 PROJECT 13.1 – Touch Screen LED ON-OFF

13.1.1 Project Description

This is perhaps the simplest GLCD project utilising touch screen. In this project, an LED is

connected to pin RC7 of the microcontroller. Two buttons are placed on the screen, labelled

ON and OFF. Touching the ON button will turn the LED ON. Similarly, touching the OFF

button will turn the LED OFF.

The principle of operation of a touch screen is such that, as shown in Figure 13.1, if one

side of a layer is connected to þVand the other side to ground, a potential gradient results on

the screen layer, and the voltage at any point on this layer becomes directly proportional to

the distance from the þV side.

In a 4-wire resistive touch screen, two measurements are made one after the other one to

determine the X and Y co-ordinates of the point touched by the user. Figure 13.2a shows how

the X co-ordinate can be determined. Here, the right- and left-hand sides of the top layer can

be connected to þVand ground, respectively. The bottom layer can then be used to sense and

measure the voltage at the point touched by the user. An A/D converter is used to convert this

voltage to digital and then determine the X co-ordinate. Similarly, Figure 13.2b shows how

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

the Y co-ordinate can be determined. Here, the upper and lower sides of the bottom layer can

be connected to þV and ground, respectively. The top layer can then be used to sense and

measure the voltage at the point touched by the user. Again, an A/D is used to convert the

voltage to digital and then to determine the Y co-ordinate.

Figure 13.1 Voltage gradient in a screen layer

Figure 13.2 Determining the X and Y co-ordinates. (a) Determining the X co-ordinate

(b) Determining the Y co-ordinate

402 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

13.1.2 Block Diagram

The block diagram of the project is shown in Figure 13.3. The touch screen graphics display

will show the images, as shown in Figure 13.4. Rectangles and boxes will be drawn on the

screen with text inside them. The screen is 128 pixels horizontal and 64 pixels vertical,

with the origin at the top left corner, the X axis to the right and the Y axis downwards. The

co-ordinates of the shapes are also shown in Figure 13.4.

Figure 13.3 Block diagram of the project

Figure 13.4 Screen layout

Touch Screen Graphics LCD Projects 403

www.it-ebooks.info

http://www.it-ebooks.info/

The operation of the project is as follows: After power-up, the LED is OFF. The user can

then touch the LED ON box to turn ON the LED. Touching the LED OFF box will turn the

LED OFF.

13.1.3 Circuit Diagram

The circuit diagram of the project is shown in Figure 13.5. PORT B and PORT D of the

microcontroller are connected to the GLCD. The connections between the microcontroller

and the GLCD are as follows:

GLCD Pin Microcontroller Pin

D0–D7 RD0-RD7

CS1 RB0

CS2 RB1

RS RB2

R/W RB3

E RB4

RST RB5

The background light of the GLCD is turned ON permanently by connecting the LDE

input to þ5V via a resistor, and the GLCD contrast is adjusted using a 10 KB potentiometer.

In addition, as we shall see later in this section, the touch panel uses pins RA0, RA1, RC0

and RC1 of the microcontroller.

Figure 13.5 Circuit diagram of the project

404 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

In a microcontroller touch screen interface, a controller circuit is usually required to pro-

vide the correct logic levels to the touch screen pins. Normally, logic 0, logic 1 and OFF state

are required. The OFF state can be provided using an open-drain microcontroller pin in input

mode. Alternatively, touch screen controller chips, such as AD785 or AD7846, can be used

to provide the necessary interface voltage levels. In circuit 13.5, switching transistors are

used as the touch screen controller. For example, when RC0 is set to logic 1, Top Right pin

becomes 1, Top Left pin becomes 0 and Bottom Upper pin becomes OFF.

13.1.3.1 Measuring the X Co-ordinate

In reference to Figure 13.6, and assuming the top layer has contacts Top Right and Top Left

and the bottom layer has contacts Bottom Upper and Bottom Lower, the following setup is

required to determine the X co-ordinate:

Top Left: Ground

Top Right: þ5 V

Bottom Lower: To A/D converter (X co-ordinate)

Bottom Upper: OFF

Similarly, to determine the Y co-ordinate, the following setup should be made:

Top Left: To A/D converter (Y co-ordinate)

Top Right: OFF

Bottom Lower: Ground

Bottom Upper: þ5 V

In Figure 13.6 for example, the X co-ordinate can be read into analogue port RA0 when:

RC0 = 1 (Top Left = 0, Top Right = 1,

Bottom Upper = OFF)

RC1 = 0 (Bottom Lower = OFF)

Read RA0 (Read Bottom Lower)

Figure 13.6 Connection of the touch screen

Touch Screen Graphics LCD Projects 405

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, to read the Y co-ordinate:

RC0 ¼ 0 (Top Left ¼ OFF, Top Right ¼ OFF, Bottom Upper ¼ 1)

RC1 ¼ 1 (Bottom Lower ¼ Ground)

Read

RA1

(Read Top Left)

If you are using the EasyPIC 7 development board, connect the touch screen flat cable, and

then connect the GLCD into its socket. Set switch SW3 jumpers 4 to 7 to ON position to

connect the RA0, RA1, RC0 and RC1 pins to the touch-screen controller circuit (see the

EasyPIC 7 development board User Guide for further information).

13.1.4 Project PDL

The PDL of this project is very simple and is given in Figure 13.7.

BEGIN
Configure PORT B, PORT C, and PORT D as digital output
Configure PORT A as analog input
Initialise GLCD
Clear GLCD
Draw Boxes for the two buttons
Write texts inside the two boxes
DO FOREVER

CALLReadX to read X axis co-ordinate and convert to screen pixels
CALLReadY to read Y axis co-ordinate and convert to screen pixels
IF X and Y axis co-ordinates are inside the LED ON box THEN

Turn ON the LED
ENDIF
IF X and Y axis co-ordinates are inside the LED OFF box THEN

Turn OFF the LED
ENDIF

ENDDO
END

BEGIN/ReadX
Set RC0 and RC1 to read the X axis co-ordinate
Read Channel 0 (RA0 or AN0)
Convert to X axis pixel co-ordinates
Return pixel co-ordinates

END/ReadX

BEGIN/ReadY
Set RC0 and RC1 to read the Y axis co-ordinate
Read Channel 1 (RA1 or AN1)
Convert to Y axis pixel co-ordinates
Return pixel co-ordinates

END/ReadY

Figure 13.7 PDL of the project

406 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

13.1.5 Project Program

The program is named TScreen1.C and the program listing of the project is shown in

Figure 13.8. At the beginning of the project, symbols ON and OFF are defined as 1 and 0,

/ **
GLCD TOUCH SCREEN LED
=====================

This project shows how the touch screen can be used with the GLCD. In this project, an LED
LED is connected to port RC7 of the microcontroller. Two buttons labelled LED ON and LED
OFF are placed on the GLCD screen. Touching the LED ON button turns on the LCD. Similarly,
touching the LED OFF button turns off the LCD.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 – D7 RD0 – RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and
+5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: TScreen1.C
**/
#define ON 1
#define OFF 0
sbit LED at RC7_bit;

// Glcd module connections
charGLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbitGLCD_RS_Direction at TRISB2_bit;
sbitGLCD_RW_Direction at TRISB3_bit;

Figure 13.8 Program listing of the project

Touch Screen Graphics LCD Projects 407

www.it-ebooks.info

http://www.it-ebooks.info/

sbitGLCD_EN_Direction at TRISB4_bit;
sbitGLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

//
// This function reads the voltage of the point touched by the user. The voltage is read from
// Channel 0 (RA0). The voltage is then converted into the real pixel co-ordinates by multiplying
// it with 128/1024 (10-bit A/D converter has 1024 steps, and the screen has 128 pixels in the
// X direction)
//
longReadX(void)
{

long x;
// Set to read X co-ordinate RC0_bit = 1;
// RC1_bit = 0;

Delay_Ms(5);
// Read from Channel 0 x = ADC_Read(0);
// Convert to screen pixel co-ordinates x = x*128/1024;

return(x);
}

//
// This function reads the voltage of the point touched by the user. The voltage is read from
// Channel 1 (RA1). The voltage is then converted into the real pixel co-ordinates by multiplying
// with 64/1024 and taking away from 64 (the Y co-ordinate is downwards and it has 64 pixels)
//
longReadY(void)
{

long y;
// Set to read Y co-ordinate RC0_bit = 0;
// RC1_bit = 1;

Delay_Ms(5);
// Read from Channel 1 y = ADC_Read(1);
// Convert to screen pixel co-ordinates y = 64 - ((y*64)/1024);

return(y);
}

//
// Start of main program
//
void main()
{

longx_real, y_real;
 ANSELA = 3; // Configure RA0, RA1 as analog

// Configure PORT B as digital ANSELB = 0;
// Configure PORT C as digital ANSELC = 0;
// Configure PORT D as digital ANSELD = 0;
// RA0 and RA1 are inputs TRISA = 0x03;
// PORT B is output TRISB = 0;

Figure 13.8 (Continued)

408 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

respectively, and LED is assigned to port pin RC7. Then, the connection between the micro-

controller and the GLCD are defined using sbit statements. PORT B and PORT D are used to

drive the GLCD and both of these ports are configured as digital output. PORT C is also

configured as digital output, since the LED is connected to pin RC7 of this port. PORTA is

configured as analogue and bits 0 and 1 of this port are configured as inputs, so that RA0 (or

AN0) and RA1 (or AN1) become analogue input ports.

The GLCD is then initialised, the screen is cleared, and the LED is turned OFF at the

beginning of the program. The program then draws two boxes with rectangle edges and

writes the texts LED ON and LED OFF inside these boxes. The rectangles and boxes

are drawn using the Glcd_Rectangle and Glcd_Box functions, respectively, at the following

co-ordinates:

Glcd_Rectangle(5, 12, 40, 42, 1); // Draw LED ON rectangle

Glcd_Box(7, 14, 38, 40, 1); // Draw LED ON box

Glcd_Rectangle(50, 12, 85, 42, 1); // Draw LED OFF rectangle

Glcd_Box(52, 14, 83, 40, 1); // Draw LED OFF box

The text font is changed to 3� 5 and texts are written inside the boxes using the following

GLCD functions:

Glcd_Set_Font(Font_Glcd_System3x5,3,5,32);

Glcd_Write_Text("LED ON", 10, 3, 0);

Glcd_Write_Text("LED OFF", 54, 3, 0);

 // PORT D is output TRISD = 0;
// PORT C is output TRISC = 0;

PORTA = 0;

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);
// Turn OFF the LED to start with LED = OFF;

// Draw LED ON rectangle Glcd_Rectangle(5, 12, 40, 42, 1);
// Draw LED ON box Glcd_Box(7, 14, 38, 40, 1);
// Draw LED OFF rectangle Glcd_Rectangle(50, 12, 85, 42, 1);
// Draw LED OFF box Glcd_Box(52, 14, 83, 40, 1);

Glcd_Set_Font(Font_Glcd_System3x5,3,5,32); // Change font to smaller size
// Write LED ON Glcd_Write_Text("LED ON", 10, 3, 0);
// Write LED OFF Glcd_Write_Text("LED OFF", 54, 3, 0);

// Do FOREVER for(;;)
{

// Read X co-ordinate x_real = ReadX();
y_real = ReadY(); // Read Y co-ordinate
if((x_real>= 7 &&x_real<= 38) && (y_real>= 14 &&y_real<=40))LED = ON;
if((x_real>= 52 &&x_real<= 83) && (y_real>= 14 &&y_real<=40))LED = OFF;

}
}

Figure 13.8 (Continued)

Touch Screen Graphics LCD Projects 409

www.it-ebooks.info

http://www.it-ebooks.info/

The main part of the program is executed in an endless loop, formed using a for statement.

Inside this loop, the X and Y co-ordinates of the screen are read by calling functions ReadX

and ReadY. Function ReadX reads the analogue voltage corresponding to the point touched

by the user, and returns the real X co-ordinate of this point as the pixel co-ordinate. Notice

that since a 10-bit A/D converter is used, the voltage read is converted to the pixel co-ordi-

nate by multiplying it with 128/1024. Similarly, function ReadY reads the analogue voltage

corresponding to the point touched by the user and returns the real Y co-ordinate touched by

the user as the pixel co-ordinate. Here also, the voltage read is converted to the pixel co-

ordinate by multiplying it with 64/1024 and subtracting from 64, since the Y co-ordinate is

downwards. Notice that the Y co-ordinate of the touch screen is not very accurate since the

number of pixels in the Y direction is small and the voltage read is multiplied by 64/1024 ¼
0.0625. Thus, for example, if the converted digital value is 0 or 10, or even 15, the same

value will be returned by the function. The program then checks to see whether or not

the touched point is inside the shape labelled LED ON, and if so, the LED is turned ON.

Similarly, the LED is turned OFF if the point touched by the user is inside the shape labelled

LED OFF.

Figure 13.9 shows a typical display on the GLCD.

13.2 PROJECT 13.2 – LED Flashing with Variable Rate

13.2.1 Project Description

This project shows how the GLCD and touch screen can be used to develop the project of a

flashing LED, where the flashing rate is selected by touching the appropriate button on the

GLCDscreen. Figure 13.10 shows the screen layout and co-ordinates of the various boxes

and rectangles displayed on the screen.

Figure 13.9 Typical display on the GLCD

410 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

An LED is connected to pin RC7 of the microcontroller. The flashing rate is displayed on

the screen in the form of boxes. Four options are available: 1 second, 5 seconds, 10 seconds

and 20 seconds. The user initially selects the flashing rate by touching the required box on

the screen. The flashing then starts by touching the START button.

13.2.2 Block Diagram

The block diagram of the project is as shown in Figure 13.3.

13.2.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 13.5.

13.2.4 Project PDL

The PDL of this project is given in Figure 13.11.

13.2.5 Project Program

The program is named TScreen2.C and the program listing of the project is shown in Figure

13.12. At the beginning of the project, an LED is assigned to port pin RC7 of the

Figure 13.10 Screen layout of the project

Touch Screen Graphics LCD Projects 411

www.it-ebooks.info

http://www.it-ebooks.info/

microcontroller. Then, the connections between the microcontroller and the GLCD are

defined using sbit statements. PORT B and PORT D are used to drive the GLCD and both of

these ports are configured as digital outputs. PORT C is also configured as digital output,

since the LED is connected to pin RC7 of this port. PORT A is configured as analogue and

bits 0 and 1 of this port are configured as inputs so that RA0 (or AN0) and RA1 (or AN1)

become analogue input ports.

The GLCD is then initialised, the screen is cleared, and the LED is turned OFF at the

beginning of the program. The program then draws the boxes and rectangles, and writes the

texts START, and the flashing rates inside these shapes. These boxes and rectangles are

BEGIN
Define connections between GLCD and microcontroller
Configure PORT B, PORT C and PORT D as digital outputs
Define texts to be displayed inside the shapes
Configure PORT A as analog input
Initialise GLCD
Clear GLCD
CALL Background to display the background
DO FOREVER

CALLReadX to find the X co-ordinate of touched point
CALLReadY to find the Y co-ordinate of touched point
Find out which button is touched to determine the selected flashing rate
Display the selected flashing rate
IF START button is touched

Display “flashing…” at the bottom of the screen
DO FOREVER

Flash the LED at the selected rate
ENDDO

ENDIF
ENDDO

END

BEGIN/ReadX
Setup to read the X co-ordinate of the touched point
Read and convert the touched point to screen co-ordinates

END/ReadX

BEGIN/ReadY
Setup to read the Y co-ordinate of the touched point
Read and convert the touched point to screen co-ordinates

END/ReadY

BEGIN/Background
Display rectangles at specified co-ordinates
Display boxes at specified co-ordinates
Display texts inside the shapes

END/Background

Figure 13.11 PDL of the project

412 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

/**
VARIABLE FLASHING LED WITH TOUCH SCREEN
======================================

This is another project showing how the touch screen can be used with the GLCD. In this
project, an LED is connected to port RC7 of the microcontroller. The LED flashes where the
flashing rate is selected by touching the required button on the GLCD screen. The user can
select 1s, 5s, 10s, and 20s as the flashing rate. Touching the START button starts the flashing.

In this project a KS0107/108 controller based GLCD with 128 x 64 pixels is connected to a
PIC18F45K22 type microcontroller, operated from an 8MHz crystal (any other type PIC
microcontroller can also be used if desired).

The GLCD is connected to PORT B of the microcontroller as follows:

 GLCD pin Microcontroller pin
 CS1 RB0
 CS2 RB1
 RS RB2
 R/W RB3
 RST RB4
 EN RB5
 D0 – D7 RD0 – RD7

The brightness of the GLCD is controlled by connecting the arm of a 10K potentiometer to
pin Vo of the GLCD. The other arms of the potentiometer are connected to pin Vee and
+5V supply.

Author: Dogan Ibrahim
Date: December, 2011
File: TScreen2.C
***/
#define ON 1
#define OFF 0

// LED is connected to pin RC7 sbit LED at RC7_bit;

// Glcd module connections
charGLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbitGLCD_RS_Direction at TRISB2_bit;
sbitGLCD_RW_Direction at TRISB3_bit;

Figure 13.12 Program listing of the project

Touch Screen Graphics LCD Projects 413

www.it-ebooks.info

http://www.it-ebooks.info/

sbitGLCD_EN_Direction at TRISB4_bit;
sbitGLCD_RST_Direction at TRISB5_bit;
// End Glcd module connections

charmsg_Start[] = "START";
char msg_1s[] = "1s";
char msg_5s[] = "5s";
char msg_10s[] = "10s";
char msg_20s[] = "20s";
charmsg_Rate[] = "Rate= ";
charmsg_Flashing[] = "flashing...";

//
// This function introduces variable delay to the program. The delay in seconds is passed as
// an argument to the function
//
voidDelay_Seconds(char d)
{
char i;
for(i=0; i<d; i++)Delay_Ms(1000);

}

//
// This function reads the voltage of the point touched by the user. The voltage is read from
// Channel 0 (RA0). The voltage is then converted into the real pixel co-ordinates by
// multiplying it with 128/1024 (10-bit A/D converter has 1024 steps, and the screen has 128
// pixels in the X direction)
//
longReadX(void)
{
long x;

 RC0_bit = 1;
 RC1_bit = 0;
Delay_Ms(5);

// Read from Channel 0 x = ADC_Read(0);
// Convert to real co-ordinates x = x*128/1024;

return(x);
}

//
// This function reads the voltage of the point touched by the user. The voltage is read from
// Channel 1 (RA1). The voltage is then converted into the real pixel co-ordinates by
// multiplying with 64/1024 and taking away from 64 (the Y co-ordinate is downwards and
// it has 64 pixels)
//
longReadY(void)
{
long y;

 RC0_bit = 0;
 RC1_bit = 1;

Figure 13.12 (Continued)

414 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Delay_Ms(5);
// Read from Channel 1 y = ADC_Read(1);
// Convert to real co-ordinates y = 64 - ((y*64)/1024);

return(y);
}

//
// This function displays the GLCD Background. First, rectangles and boxes are drawn to
//representthe user selections. Then, texts are written inside these shapes
//
void Background(void)
{

// START rectangle Glcd_Rectangle(5,12,40,42,1);
// START box Glcd_Box(7,14,38,40,1);
// 1s rectangle Glcd_Rectangle(60,10,85,30,1);
// 1s box Glcd_Box(62,12,83,28,1);
// 5s rectangle Glcd_Rectangle(95,10,120,30,1);
// 5s box Glcd_Box(97,12,118,28,1);
// 10s rectangle Glcd_Rectangle(60,35,85,55,1);
// 10s box Glcd_Box(62,37,83,53,1);
// 20s rectangle Glcd_Rectangle(95,35,120,55,1);
// 20s box Glcd_Box(97,37,118,53,1);

Glcd_Write_Text(msg_Start,8,3,0); // START text
// 1s text Glcd_Write_Text(msg_1s,67,2,0);
// 5s text Glcd_Write_Text(msg_5s,102,2,0);
// 10s text Glcd_Write_Text(msg_10s,65,5,0);

Glcd_Write_Text(msg_20s,100,5,0); // 20s text
Glcd_Write_Text(msg_Rate,10,7,1); // RATE= text

}

//
// Start of main program
//
void main()
{

longx_real, y_real;
char rate, i;

// Configure RA0, RA1 asanalog ANSELA = 3;
// Configure PORT B as digital ANSELB = 0;
// Configure PORT C as digital ANSELC = 0;
// Configure PORT D as digital ANSELD = 0;
// RA0 and RA1 are inputs TRISA = 0x03;
// PORT B is output TRISB = 0;
// PORT D is output TRISD = 0;
// PORT C is output TRISC = 0;

PORTA = 0;

Figure 13.12 (Continued)

Touch Screen Graphics LCD Projects 415

www.it-ebooks.info

http://www.it-ebooks.info/

// Initialise GLCD Glcd_Init();
// Clear GLCD Glcd_Fill(0x0);
// Turn OFF LED to start with LED = OFF;
// Display GLCD background Background();

// DO FOREVER for(;;)
{

// Read X co-ordinate x_real = ReadX();
y_real = ReadY(); // Read Y co-ordinate

//
// Check to see which button (if any) is touched to
//

if((x_real>= 62 &&x_real<= 83) && (y_real>= 12 &&y_real<= 28))
{

rate = 1; msg_Rate[5]='1'; msg_Rate[6]='s'; msg_Rate[7]=' ';
}
else if((x_real>= 97 &&x_real<= 118) && (y_real>= 12 &&y_real<= 28))
{

rate = 5; msg_Rate[5] = '5'; msg_Rate[6] = 's'; msg_Rate[7]=' ';
}
else if((x_real>= 62 &&x_real<= 83) && (y_real>= 37 &&y_real<= 53))
{

rate = 10; msg_Rate[5]='1'; msg_Rate[6]='0'; msg_Rate[7]='s';
}
else if ((x_real>= 97 &&x_real<= 118) && (y_real>= 37 &&y_real<= 53))
{

rate = 20; msg_Rate[5]='2'; msg_Rate[6]='0'; msg_Rate[7]='s';
}

//
// Display the selected rate
//

Glcd_Write_Text(msg_Rate,1,7,1);
//
// Check if START button is touched and if so start the flashing action
//

if ((x_real>= 7 &&x_real<= 38) && (y_real>= 14 &&y_real<= 40))
{

for(i=0; i<11; i++)msg_Rate[i+9] = msg_Flashing[i];
Glcd_Write_Text(msg_Rate,1,7,1);

// Start of the flashing action for(;;)
{

// Turn LED ON LED = ON;
Delay_Seconds(rate); // Wait for the specified delay

// Turn LED OFF LED = OFF;
Delay_Seconds(rate); // Wait for the specified delay

}
}

 }
}

Figure 13.12 (Continued)

416 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

drawn using the Glcd_Rectangle and Glcd_Box functions, respectively, at the following co-

ordinates:

Glcd_Rectangle(5,12,40,42,1); // START rectangle

Glcd_Box(7,14,38,40,1); // START box

Glcd_Rectangle(60,10,85,30,1); // 1s rectangle

Glcd_Box(62,12,83,28,1); // 1s box

Glcd_Rectangle(95,10,120,30,1); // 5s rectangle

Glcd_Box(97,12,118,28,1); // 5s box

Glcd_Rectangle(60,35,85,55,1); // 10s rectangle

Glcd_Box(62,37,83,53,1); // 10s box

Glcd_Rectangle(95,35,120,55,1); // 20s rectangle

Glcd_Box(97,37,118,53,1); // 20s box

The texts are written inside these boxes at the following co-ordinates:

Glcd_Write_Text(msg_Start,8,3,0); // START text

Glcd_Write_Text(msg_1s,67,2,0); // 1s text

Glcd_Write_Text(msg_5s,102,2,0); // 5s text

Glcd_Write_Text(msg_10s,65,5,0); // 10s text

Glcd_Write_Text(msg_20s,100,5,0); // 20s text

Glcd_Write_Text(msg_Rate,10,7,1); // RATE= text

The program then checks to see if the user touched a rate selection box, and if so, the

required flashing rate is selected and loaded into variable rate. When the user touches the

START box, the flashing action begins where the LED is flashed continuously at the specified

rate inside a for loop, and the text ‘flashing . . . ’ is displayed at the bottom of the screen.

Figure 13.13 shows a typical display on the GLCD before the flashing is started. In

Figure 13.14 the display is shown after the user selected the 5-second flashing rate and

started the flashing action.

Figure 13.13 Display before starting the flashing action

Touch Screen Graphics LCD Projects 417

www.it-ebooks.info

http://www.it-ebooks.info/

13.3 Summary

Touch screen GLCDs are used in many consumer and industrial control applications. Most

electronic games, mobile phones, MP3 players, GPS systems, and so on all use the touch

screen technology. This chapter has explained the use of touch panel screens in microcon-

troller based projects. Two tested and working projects are given in the chapter. The first

project is simple and shows how to control an LCD using two shapes on a touch

screen LCD. The second project shows how to change the flashing rate of an LED using

touch screen GLCD, where the flashing rate is selected by touching appropriate boxes on

the screen.

Exercises

13.1 4 LEDs are connected to upper nibble of PORT C. Design a touch screen based proj-

ect with 4 boxes on the screen to represent each LED. Initially, all the LEDs should be

OFF. Touching the box representing an LED should toggle the state of the correspond-

ing LED.

13.2 Design an integer calculator using a touch screen GLCD. Your calculator should have

the numeric keys 0 to 9, the basic four mathematical keys ‘þ � �/’, and the ENTER

key. A display should be provided to see the results of calculations.

13.3 Design a calculator to convert from �C to �F. Your calculator should have keys 0 to 9,

and an ENTER key. A display should also be provided to show the results of

conversions.

13.4 Design a touch screen based project for drawing rectangular shapes on the screen. The

user should touch the top left and bottom right co-ordinates of the rectangle to be

drawn, and the program should draw the required rectangle.

Figure 13.14 Display after starting the flashing action

418 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

14

Using the Visual GLCD Software
in GLCD Projects

Visual GLCD is a standalone software package used for the rapid development of graphical

user interfaces for various types of GLCDs in embedded devices. With the help of the soft-

ware, users can create screens and place drag-and-drop components on these screens, which

can be used for building complex graphical applications. The Visual GLCD software gener-

ates code compatible with the mikroC Pro for PICcompiler and similar compilers developed

by mikroElektronika.

Current version (2.50) of Visual GLCD supports the following features:

� 15 graphical user interface components;
� automatic code generation for compilers;
� multiple font support, such as regular, bold, italic, underline and strikeout;
� support for external memory;
� ‘On Press/release’ procedures when objects are clicked (event driven design);
� changing properties of multiple objects at the same time;
� zoom in/out option for each screen generated;
� show/hide grid options;
� print and print preview of current screen.

The Visual GLCD software must be installed before it can be used. Download the software

from the mikroElektronika Web site http://www.visualglcd.com. Start up the software by

double clicking on the appropriate icon. The Visual GLCD IDE will appear on the screen

and you are now ready to use the software (you may need to have a licence or a dongle to

use the software in full capacity).

The steps to create a graphics application using the Visual GLCD software are given

below:

1. Create project files.

2. Configure project.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

3. Add screen and give it a name.

4. Place components on the screen and configure component properties.

5. Assign actions (or events) to components.

6. Generate the code.

7. Compile the code and load to the target microcontroller.

Several examples are given in this chapter, to show how the Visual GLCD software can be

used in GLCD projects. The first project gives all the steps in detail, while the other projects

simply describe the important points in each project.

14.1 PROJECT 14.1 – Toggle LED

14.1.1 Project Description

This is perhaps the simplest Visual GLCD based project. In this project, a standard GLCD

with touch screen is used, as described in Chapter 13. An LED is connected to pin RC7 of

the microcontroller and the LED is toggled when a shape is touched on the screen.

14.1.2 Block Diagram

The block diagram of the project is as shown in Figure 13.3.

The operation of the project is as follows: After power-up and screen calibration, the user

can touch the TOGGLE LED box to turn ON the LED. Touching this box again will turn the

LED OFF.

14.1.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 13.5. Standard 128� 64 pixel GLCD

is used in this project. Switching transistors are used as the touch screen controller. A

PIC18F45K22 type microcontroller is used in the design with 8 MHz crystal.

1. Create Project File

Start the Visual GLCD software. Select Project -> New from the top-down menu. A win-

dow will appear, as shown in Figure 14.1. Enter the project name and choose the desired

project path. Then click OK. In this project, the name TOGGLE is given to the project.

2. Configure Project

In the Project Settings window, make the following settings:

14.1.3.1 General (see Figure 14.2)

� Hardware patterns: EasyPIC6;
� Target Compiler: mikroC Pro for PIC PRO for PIC;
� Target Device: PIC18F45K22;
� Device Clock (Hz): 8 000 000;

420 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� Configure PORT B, PORT C and PORT D as digital I/O, using the appropriate statements

for the chosen microcontroller (e.g. use the ANSEL statements if using the PIC18F45K22

microcontroller), and configure PORT C as output in the ‘Init Code:’ section.

Notice here that the EasyPIC6 development board is used in the project, as this board uses

the standard GLCD and touch screen to microcontroller interface.

Figure 14.1 Specify the project name and project path

Figure 14.2 General settings

Using the Visual GLCD Software in GLCD Projects 421

www.it-ebooks.info

http://www.it-ebooks.info/

14.1.3.2 GLCD (see Figure 14.3)

� GLCD_Data_Port: PORTD GLCD_CS1_Direction: TRISB0_bit
� GLCD_CS1: LATB0_bit GLCD_CS2_Direction: TRISB1_bit
� GLCD_CS2: LATB1_bit GLCD_RS_Direction: TRISB2_bit
� GLCD_RS: LATB2_bit GLCD_RW_Direction: TRISB3_bit
� GLCD_RW: LATB3_bit GLCD_EN_Direction: TRISB4_bit
� GLCD_EN: LATB4_bit GLCD_RST_Directiion:TRISB5_bit
� GLCD_RST: LATB5_bit

14.1.3.3 Touch Panel (see Figure 14.4)

READ-X: A/D Channel: 0 Drive A at: RC0_bit DriveA_Direction at: TRISC0_bit

READ-Y: A/D Channel: 1 Drive B at: RC1_bit DriveB_Direction at: TRISC1_bit

You should also check the section ‘Init Code:’, to make sure that the entries are valid for

the chosen microcontroller type.

Notice that the screen calibration can either be set as ‘Manual’ or ‘Preset’. In this project,

the ‘Manual’ option is chosen so that the screen can be calibrated during the run time.

3. Add Screen and Give it a Name

Give a name to the screen. Let us rename the screen to MainScreen. In the Screens

Properties on the left, find the Name property and change it to MainScreen, as shown in

Figure 14.3 GLCD settings

422 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 14.5. A new screen can be added if desired, by clicking on the Add Screen icon

(green ‘þ ’ symbol).

4. Place Components

We can now use the Tools displayed on the right-hand side to place components on our

screen. Click ‘Label’, place it on the screen, and change its ‘Caption’ to ‘TOGGLE LED:’

in the ‘Properties’ window in the bottom left-hand side. Then click ‘Rounded Button’ and

place it on the screen. Change the ‘Caption’ of this button to ‘LED’. Figure 14.6 shows

the screen layout with the components.

5. Assign Actions to Components

We can now add actions to our LED component, so that when the user clicks on this

component, we can toggle the LED. Select the LED component by clicking on it. Then,

double click on ‘OnClick’ property in the Properties window. You should see the event

function name ‘ButtonRound1Click’ displayed in the Properties window and an empty

function with this name will appear in the middle of the screen. Add the code associated

Figure 14.4 Touch Panel settings

Figure 14.5 Name the screen as MainScreen

Using the Visual GLCD Software in GLCD Projects 423

www.it-ebooks.info

http://www.it-ebooks.info/

with this event. Here, we wish to toggle the LED when the LED button is clicked, there-

fore, enter the code shown in Figure 14.7 to the function body.

6. Generate the Code

We are now ready to generate the code for our project. Just click the ‘Generate Code’ icon

in the top menu. You should get a message to say that the code has been generated suc-

cessfully. The generated code can be seen by clicking the ‘Generated Code’ at the bottom

part of the screen.

7. Compile the Code and Load to the Microcontroller

Click the icon ‘Start Compiler’ in the top menu to start the mikroC Pro for PIC com-

piler. Compile the program as before by clicking the ‘Build’ icon in the top menu, and

Figure 14.6 Adding Components onto the Screen

Figure 14.7 Add the code associated with the event

424 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

load the code to the target microcontroller by clicking the ‘Tools -> mE Programmer’

in the top menu.

You should now see the display, as in Figure 14.8. The LED connected to pin RC7 should

toggle as you click the ‘TOGGLE LED’ button. When the program is run, the user is asked

initially to calibrate the screen by touching the appropriate points of the screen in response to

prompts ‘TOUCH BOTTOM LEFT’ and ‘TOUCH UPPER RIGHT’.

The code generated by the Visual GLCD program is large and consists of three modules.

Assuming the project name is TOGGLE, the following modules are generated:

� The main program: for example TOGGLE_main.C;
� Events code: for example TOGGLE_events_code.C;
� Driver program: for example TOGGLE_driver.C.

In addition, a number of include files are generated, for example TOGGLE_objects.h and

TOGGLE_resources.h. The details of the generated files are beyond the scope of this book.

Interested readers should consult the Visual GLCD documentation.

14.2 PROJECT 14.2 – Toggle more than One LED

14.2.1 Project Description

This project is similar to the previous project, but here the user is given the option of toggling

more than one LED. Four upper bits of PORT C (RC4 to RC7) are used in the project, and

the screen offers the following options:

� Turn OFF all LEDs RC4 to RC7.
� Turn ON all LEDs RC4 to RC7.
� Toggle individual LEDs from RC4 to RC7.

Figure 14.8 Typical display when the program is run

Using the Visual GLCD Software in GLCD Projects 425

www.it-ebooks.info

http://www.it-ebooks.info/

14.2.2 Block Diagram

The block diagram of the project is the same as in Figure 13.3, but four LEDs are connected

to upper four pins of PORT C instead of just one LED.

The operation of the project is as follows: After power-up and calibration, the user can

touch the ALL ON box to turn ON all the four LEDs. Similarly, touching the All OFF box

will turn OFF all the four LEDs. Touching the boxes for individual LEDs will toggle the

corresponding LEDs.

14.2.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 13.5. A standard 128� 64 pixel

GLCD is used in this project. Switching transistors are used as the touch screen controller. A

PIC18F45K22 type microcontroller is used with an 8 MHz crystal.

The project creation and configuration are as in the previous project. The project is named

TOGGLEALL. The components are placed on the screen, as shown in Figure 14.9. ALL ON,

ALL OFF boxes are shown as ‘Rounded Buttons’. The LEDs are shown as ‘Circles’.

The contents of the user created events file are shown in Figure 14.10. Notice how the

events are created as functions.

When the program is run, initially the screen is calibrated, and then the various shapes

are shown on the display, as in Figure 14.11. Clicking box ALL ON will turn ON all four

upper LEDs of PORT C. Similarly, clicking ALL OFF will turn OFF all four upper LEDs

of PORT C. Individual bits of the upper four LEDs can be toggled by clicking on the

appropriate bit number.

14.3 PROJECT 14.3 – Mini Electronic Organ

14.3.1 Project Description

In this project, a mini electronic organ is designed. The organ has 8 keys corresponding to

the musical octave starting with A4¼ 440 Hz. A buzzer is used to generate the musical notes.

Pressing a note key on the screen plays the note with the correct frequency.

Figure 14.9 Adding Components onto the Screen

426 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

#include "TOGGLEALL_objects.h"
#include "TOGGLEALL_resources.h"

//--------------------- User code ---------------------//

//----------------- End of User code ------------------//

// Event Handlers

void ButtonRound1Click() {
PORTC = PORTC | 0xF0; // Turn ON upper 4 LEDs
}

void ButtonRound2Click() {
PORTC = PORTC & 0x0F; // Turn OFF upper 4 LEDs
}

void CircleButton4Click() {
RC4_bit = ~RC4_bit;
}

void CircleButton1Click() {
RC5_bit = ~RC5_bit;
}

void CircleButton3Click() {
RC6_bit = ~RC6_bit;
}

void CircleButton2Click() {
RC7_bit = ~RC7_bit;
}

Figure 14.10 Contents of the events file

Figure 14.11 Typical display when the program is run

Using the Visual GLCD Software in GLCD Projects 427

www.it-ebooks.info

http://www.it-ebooks.info/

14.3.2 Block Diagram

The block diagram of the project is shown in Figure 14.12.

The operation of the project is as follows: After power-up and the calibration, the user can

touch the required note keys to play simple music.

14.3.3 Circuit Diagram

The circuit diagram of the project is as shown in Figure 14.13. A standard 128� 64 pixel

GLCD is used in the project. A buzzer is connected to port pin RC2 of the microcontroller

through an NPN switching transistor. Switching transistors are used as the touch screen con-

troller. A PIC18F45K22 type microcontroller is used with an 8 MHz crystal. If you are using

the EasyPIC 7 development board, then jumper J12 of the buzzer should be connected to

RC2.

The Visual GLCD configuration settings are slightly different, as shown in Figure 14.14.

Here, the mikroC Pro for PIC sound library is initialised in the General settings.

The project creation and configuration are as in the previous project. The project is named

GLCDMUSIC. The components are placed on the screen, as shown in Figure 14.15, in the

form of a musical keyboard, using the ‘Rounded Button’ tools. The caption of each key is

changed via the Properties window.

The frequencies of the musical notes in the A4 octave are given in Table 14.1. The contents

of the user created events file are shown in Figure 14.16. Notice how the events are created

here as functions. The ‘OnPress’ action is used to detect the key presses. You should generate

code using the Visual GLCD ‘Generate Code’ button, and then start the compiler by clicking

‘Start Compiler’ button to compile the program.

The mikroC Pro for PIC sound library function Sound_Play is used to generate sound with

the buzzer. This function has two arguments: the first argument is the frequency of the tone to

be generated, and the second argument is the duration in milliseconds. Notice that the fre-

quency can only take integer values. Before compiling the project, make sure that the sound

Figure 14.12 Block diagram of the project

428 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 14.13 Circuit diagram of the project

Figure 14.14 General settings

Using the Visual GLCD Software in GLCD Projects 429

www.it-ebooks.info

http://www.it-ebooks.info/

library is included in the compilation process. To check this, click the View -> Library Man-

ager at the top menu, and make sure that the ‘Sound’ library is ticked.

When the program is run, initially the screen is calibrated, and then the musical keyboard

shapes are displayed on the screen, as shown in Figure 14.17. Only one octave is considered

in this project for simplicity. Simple music can be played using the keyboard.

Notice that you may need to include the ‘Sound’ library in your project if you get compi-

lation errors. Select View -> Library Manager in mikroC Pro for PIC and tick the sound

library to include this library.

14.4 PROJECT 14.4 – Using the SmartGLCD

14.4.1 Project Description

SmartGLCD is a 240� 128 pixel microcontroller based resistive touch screen graphics

development tool (see Chapter 4), with built-in microcontroller, designed and developed by

mikroElektronika (http://www.mikroe.com). The main advantage of using SmartGLCD is

that everything for development is included on a 14� 9 cm PCB. SmartGLCD is based on

the PIC18F8722 microcontroller, which is loaded with Bootloader software, so that the

Figure 14.15 Adding Components onto the Screen

Table 14.1 Frequencies of musical notes

Musical Note Frequency (Hz)

C 261.63

D 293.66

E 329.63

F 349.23

G 392.00

A 440.00

B 493.88

C 523.25

430 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

device can be programmed easily without the need for expensive programmers. The device

contains USB UART module for RS232 based serial communication. In addition, a microSD

card interface is provided. SmartGLCD is powered via its USB port. The device provides a

large number of I/O pads for easy expansion.

In this project, a mini RS232 soft keyboard for serial communication is developed using

the Visual GLCD software. All the numeric and alphabetic keys are provided in the design.

The project consists of two screens. The first screen is used to configure the communications

speed (i.e. Baud rate). The second screen is the soft keyboard. Pressing a key on the key-

board will send the ASCII code of that key via the serial USB UART port of the

SmartGLCD.

#include "GLCDMUSIC_objects.h"
#include "GLCDMUSIC_resources.h"

//--------------------- User code ---------------------//

//----------------- End of User code ------------------//

// Event Handlers

void ButtonRound1Press() { // Note C (261.63 Hz)
Sound_Play(261, 250);
}

void ButtonRound2Press() { // Note D (293.66 Hz)
Sound_Play(293,250);
}

void ButtonRound3Press() { // Note E (329.63 Hz)
Sound_Play(329, 250);
}

void ButtonRound4Press() { // Note F (349.23 Hz)
Sound_Play(349, 250);
}

void ButtonRound5Press() { // Note G (392 Hz)
Sound_Play(392, 250);
}

void ButtonRound6Press() { // Note A (440 Hz)
Sound_Play(440, 250);
}

void ButtonRound7Press() { // Note B (493.88 Hz)
Sound_Play(494, 250);
}

void ButtonRound8Press() { // Note C (523.25 Hz)
Sound_Play(523, 250);
}

Figure 14.16 Contents of the events file

Using the Visual GLCD Software in GLCD Projects 431

www.it-ebooks.info

http://www.it-ebooks.info/

14.4.2 Block Diagram

The block diagram of the project is as shown in Figure 14.18.

The operation of the project is as follows: After power-up and screen calibration, the first

screen is displayed where the user is asked to select the required Baud rate by touching the

appropriate box on the screen. Then, the keyboard is displayed in the second screen.

Figure 14.17 Typical display when the program is run

Figure 14.18 Block diagram of the project

432 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

14.4.3 Circuit Diagram

The circuit diagram of the SmartGLCD board is shown in Figure 14.19, in the form of

blocks. A PIC18F8722 type microcontroller is used in the design. Details of the actual circuit

diagram can be obtained from the manufacturer’s Web site (http://www.mikroe.com).

The steps in creating the project using the Visual GLCD software are given below:

1. Create Project File

Start the Visual GLCD software as before. Select Project -> New from the top-down

menu and enter the project name. In this project, the name TERMINAL is given to the

project.

2. Configure Project

The General settings are shown in Figure 14.20. Notice that when the SmartGLCD is

selected from the hardware patterns, all the parameters associated with this board are con-

figured automatically.

The GLCD settings are shown in Figure 14.21.

The Touch Panel settings are shown in Figure 14.22. The calibration is selected as

‘Manual’, so that the screen can be calibrated during run time.

3. Add Screen and Give it a Name

The project consists of two screens: ‘Screen1’ is the ‘StartScreen’, so that this screen is

first displayed when the program is run. The second screen is named ‘Screen2’, and this

screen is displayed when the user clicks OK after selecting the Baud rate.

4. Place components

14.4.3.1 Screen1

‘Screen1’ is used to select the Baud rate between 2400, 4800, 9600 and 19 200. The selection

shapes are designed using the ‘Circle Button’ tools and the caption of each shape is set using

the Properties window. Figure 14.23 shows the ‘Screen1’ layout.

Figure 14.19 Circuit diagram of the SmartGLCD as blocks

Using the Visual GLCD Software in GLCD Projects 433

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 14.20 General settings

Figure 14.21 GLCD settings

434 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

14.4.3.2 Screen2

‘Screen2’ is the keyboard and is made up using the ‘Button’ tools. The screen layout is

designed with the help of the ‘Align and Distribute’ tool. To use this tool, let us say that we

want to make the first row of the keyboard with 11 keys. We draw one key and then duplicate

it 10 times. Then place the first one and the last one in the right positions.Then, we select all

the 11 keys, right click the mouse and select the ‘Align and Distribute’ option. Select the

following options to align all the keys correctly:

� Align Top;
� Make Same Width;

Figure 14.22 Touch Panel settings

Figure 14.23 Screen1 is used to select the Baud rate

Using the Visual GLCD Software in GLCD Projects 435

www.it-ebooks.info

http://www.it-ebooks.info/

� Make Same Height;
� Space Equally Horizontal;
� Space Equally Vertical.

Then, do the same for the other rows. After all the keys are placed correctly, you should

change their captions. Figure 14.24 shows the Screen2 layout.

5. Assign Actions to Components

We can now add actions to our components, so that when the user clicks on a component,

the function that handles the component is activated.

14.4.3.3 Screen1

Select the shape 2400 and double click the ‘OnClick’ option in the Properties window. An

empty function will be displayed. Enter the following code inside the body of the function to

set the Baud rate to 2400:

UART1_Init(2400); // 2400 Baud

Repeat for all the other Baud rates. Enter the following code for the OK button, so that

when the button is clicked, Screen2 will be displayed:

Drawscreen(&Screen2); // Draw Screen2

Figure 14.25 shows the user code for Screen1.

14.4.3.4 Screen2

Select shape with caption 1, and double click the ‘OnClick’ option in the properties window.

Enter the following code inside the body of the function, so that character ‘1’ is sent to the

UART port when the key is pressed:

UART1_WRITE(’1’); // Key 1

Figure 14.24 Screen2 layout

436 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Repeat for all the other keys. Figure 14.26 shows the user code for Screen2 (notice that the

user codes for Screen1 and Screen2 are combined in a single file).

6. Generate the Code

We are now ready to generate the code for our project. Just click the ‘Generate Code’ icon

in the top menu. You should get a message to say that the code has been generated suc-

cessfully. The generated code can be seen by clicking the ‘Generated Code’ at the bottom

part of the screen.

7. Compile the Code and Load to the Microcontroller

Click the icon ‘Start Compiler’ in the top menu to start the mikroC Pro for PIC compiler.

Compile the program as before, by clicking the ‘Build’ icon in the top menu.

The microcontroller on the SmartGLCD board is supplied with a Bootloader software that

enables the device to be programmed directly from a PC. Before programming, the

SmartGLCDBootloader software is required on the PC. The steps to program the

SmartGLCD board are given below:

� Download and install the SmartGLCD software from the manufacturer’s Web site http://

www.mikroe.com/eng/products/view/443/smartglcd-240x128-board/.
� Connect the SmartGLCD board to the PC via the USB port.

#include "Terminal_objects.h"
#include "Terminal_resources.h"

//--------------------- User code ---------------------//

//----------------- End of User code ------------------//

// Event Handlers

void Button1Click() {
Drawscreen(&Screen2); // Draw the second screen
}

void CircleButton1Click() {
 UART1_Init(19200); // 19200 Baud
}

void CircleButton2Click() {
 UART1_Init(9600); // 9600 Baud
}

void CircleButton3Click() {
 UART1_Init(4800); // 4800 Baud
}

void CircleButton4Click() {
 UART1_Init(2400); // 2400 Baud
}

Figure 14.25 User code for Screen1

Using the Visual GLCD Software in GLCD Projects 437

www.it-ebooks.info

http://www.it-ebooks.info/

void Button2Click() { // Key 1
 UART1_WRITE('1');
}

void Button3Click() { // Key 2
 UART1_WRITE('2');
}

void Button4Click() { // Key 3
 UART1_WRITE('3');
}

void Button5Click() { // Key 4
 UART1_WRITE('4');
}

void Button6Click() {
 UART1_WRITE('5'); // Key 5
}

void Button7Click() { // Key 6
 UART1_WRITE('6');
}

void Button8Click() { // Key 7
 UART1_WRITE('7');
}

void Button9Click() { // Key 8
 UART1_WRITE('8');
}

void Button10Click() { // Key 9
 UART1_WRITE('9');
}

void Button11Click() { // Key 0
 UART1_WRITE('0');
}

void Button12Click() { // Key -
 UART1_WRITE('-');
}

voidButtonQClick() { // Key Q
 UART1_WRITE('Q');
}

voidButtonWClick() { // Key W
 UART1_WRITE('W');
}

Figure 14.26 User code for Screen2

438 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

voidButtonEClick() { // Key E
 UART1_WRITE('E');
}

voidButtonRClick() { // Key R
 UART1_WRITE('R');
}

voidButtonTClick() { // Key T
 UART1_WRITE('T');
}

voidButtonYClick() { // Key Y
 UART1_WRITE('Y');
}

voidButtonUClick() { // Key U
 UART1_WRITE('U');
}

voidButtonIClick() { // Key I
 UART1_WRITE('I');
}

voidButtonOClick() { // Key O
 UART1_WRITE('O');
}

voidButtonPClick() { // Key P
 UART1_WRITE('P');
}

voidButtonAClick() { // Key A
 UART1_WRITE('A');
}

voidButtonSClick() { // Key S
 UART1_WRITE('S');
}

voidButtonDClick() { // Key D
 UART1_WRITE('D');
}

voidButtonFClick() { // Key F
 UART1_WRITE('F');
}

voidButtonGClick() { // Key G
 UART1_WRITE('G');

Figure 14.26 (Continued)

Using the Visual GLCD Software in GLCD Projects 439

www.it-ebooks.info

http://www.it-ebooks.info/

}

voidButtonHClick() { // Key H
 UART1_WRITE('H');
}

voidButtonJClick() { // Key J
 UART1_WRITE('J');
}

voidButtonKClick() { // Key K
 UART1_WRITE('K');
}

voidButtonLClick() { // Key L
 UART1_WRITE('L');
}

voidButtonZClick() { // Key Z
 UART1_WRITE('Z');
}

voidButtonXClick() { // Key X
 UART1_WRITE('X');
}

voidButtonCClick() { // Key C
 UART1_WRITE('C');
}

voidButtonVClick() { // Key V
 UART1_WRITE('V');
}

voidButtonBClick() { // Key B
 UART1_WRITE('B');
}

voidButtonNClick() { // Key N
 UART1_WRITE('N');
}

voidButtonMClick() { // Key M
 UART1_WRITE('M');
}

voidButtonCOMMAClick() { // Key,
 UART1_WRITE(',');
}

voidButtonSPACEClick() { // Key Space

Figure 14.26 (Continued)

440 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

� Start the SmartGLCDBootloader software on the PC (see Figure 14.27).
� Identify the COM port used by the SmartGLCDBootloader. Go to Control Panel ->Device

Manager, click icon ‘Ports(COM & LPT)’ and check the ‘USB Serial Port’ number. In

Figure 14.28, the port number is 15.
� Click ‘Change Settings’ button of the SmartGLCDBootloader and set the ‘Port’ to the

number found in the above step.
� Press the RESET button on the SmartGLCD board. Then click the ‘Connect’ button within

5 seconds. You should see the message ‘Connected . . . ’. The microcontroller on the

SmartGLCD board can now be programed.
� Click ‘Browse for HEX’ and select the ‘.hex’ file of your project.

 UART1_WRITE(' ');
}

voidButtonENTERClick() { // Key Enter
 UART1_WRITE(0X0D);
 UART1_WRITE(0X0A);
}

voidButtonBCKSPCClick() { // Key Backspace
 UART1_WRITE(0X08);
}

Figure 14.26 (Continued)

Figure 14.27 The SmartGLCD Bootloader software

Using the Visual GLCD Software in GLCD Projects 441

www.it-ebooks.info

http://www.it-ebooks.info/

� Click ‘Begin Uploading’ to program the microcontroller. You should now see a progress

bar as the programming is in progress. When the uploading is finished, click ‘OK’ to exit.
� Reset the SmartGLCD board. The display will start after 5 seconds (if during the first

5 seconds after a RESET there is no communication with a PC, then the microcontroller

assumes that this is a normal run and not a programming run).

When the program is run, the user is asked initially to calibrate the screen by touching the

bottom-left and upper-right points of the screen. Figure 14.29 shows Screen1 displayed on

the SmartGLCD. Select the Baud rate as 9600 by touching its button. Then click ‘OK’ to

display Screen2, as shown in Figure 14.30.

Now, when a key is touched on the keyboard, its ASCII code is sent to the receiving serial

device connected to the SmartGLCD board.

Figure 14.28 Identifying the COM port number

442 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

14.4.3.5 Testing the Program

The program can easily be tested by connecting the SmartGLCD board to a device, which

can accept RS232 serial data from its USB port. Perhaps the easiest test is by using a PC.

The mikroC Pro for PIC compiler includes a USART Terminal that can be selected from the

Tools. The steps for testing the program are given below:

� Connect the SmartGLCD board to the USB port of the PC.
� Calibrate the device by touching the appropriate points of the screen.
� Select the Baud rate as 9600 and click OK to see the keyboard on the next screen.
� Start the mikroC Pro for PIC compiler.
� Click Tools -> USART Terminal. You should see the serial communications program

activated.

Figure 14.29 Displaying Screen1

Figure 14.30 Displaying Screen2

Using the Visual GLCD Software in GLCD Projects 443

www.it-ebooks.info

http://www.it-ebooks.info/

� Make sure that the Baud rate is selected as 9600 in ‘COM Port Settings’. Click ‘Connect’

in the ‘Commands’ window to connect to the serial port.
� Touch any key on the SmartGLCD keyboard. You should see the touched keys displayed in

the ‘Receive’ window of the USART Terminal. Figure 14.31 shows the text ‘HELLO’

displayed.

14.5 PROJECT 14.5 – Decimal to Hexadecimal Converter using the
SmartGLCD

14.5.1 Project Description

In this project we shall be converting decimal numbers into hexadecimal format by designing

a calculator program using the Visual GLCD software and the SmartGLCD module. A key-

pad will be designed with decimal numbers 0 to 9, so that a decimal number can be entered.

Touching the ENTER button will convert the entered number into hexadecimal and display

it. The CLR button is used to clear the screen, so that a new number can be entered.

14.5.2 Screen Layout

The required screen layout is shown in Figure 14.32.

14.5.3 Circuit Diagram

The circuit diagram of the SmartGLCD board is as shown in Figure 14.19 in the form of

blocks. A PIC18F8722 type microcontroller is used in the design. Details of the actual circuit

diagram can be obtained from the manufacturer’s Web site (http://www.mikroe.com).

Figure 14.31 ThemikroC Pro for PIC USART Terminal

444 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The steps in creating the project using the Visual GLCD software are given below:

1. Create Project File

Start the Visual GLCD software as before, and name the project as CONVERTER.

2. Configure Project

The settings are as in the previous project (see Figures 14.20, 14.21, and 14.22).

3. Add Screen and Give it a Name

There is only one screen in the project. Name the screen as ‘Converter’.

4. Place components

We can now place the components on the screen. Let us use the Button components for

the keys. Click the Button in Tools window and place the keys on the screen, including

the CLR and ENTER keys. Change the key fonts, as shown in Figure 14.33. Change

names of CLR and ENTER keys to Buttonclr and Buttonenter, respectively. Place a

Rounded Button for the display and change its name to DispRes and its caption to

Dec-Hex. Finally, use the Line component to draw lines around the calculator.

5. Assign Actions to Components

We can now add actions to our components, so that when the user clicks on a compo-

nent, the function that handles the component is activated. Select key labelled 1 by

clicking on it, then double click on ‘OnClick’ in the properties window to see the

event code corresponding to this key. Enter the following code for this key. This code

calculates the total value of the number entered so far and stores in variable sum.

Character array Txt is loaded with character ‘1’ and this is converted into a string by

NULL terminating it. Then the built-in function strcat is used to copy this character

to the caption of button DispRes, which shows the character in the display of the

calculator. Function DrawButton(&DispRes) redraws the display button.

Figure 14.32 Screen layout of the project

Using the Visual GLCD Software in GLCD Projects 445

www.it-ebooks.info

http://www.it-ebooks.info/

void Button1Click() {

char Txt[2];

sum = 10*sum + 1;

Txt[0] = ’1’;

Txt[1] = 0x0;

strcat(DispRes.caption, Txt);

DrawButton(&DispRes);

}

Repeat the above process for all the keys 0 to 9. Then, select key CLR, double click the

‘OnClick’ in the Properties window and enter the following code for the clear key. This

code clears the screen by copying an empty string to the display and then clearing varia-

ble sum.

voidButtonclrClick() {

strcpy(DispRes.caption, "");

sum = 0;

DrawButton(&DispRes);

}

Select the ENTER key and enter the following code for its event function. When the

ENTER key is touched, function ButtonenterClick is invoked. This function clears a

variable called q, clears the display, and calls to function PrintOut to convert variable

sum (which is the total number entered by the user) from decimal into hexadecimal.

Function PrintOut is a built-in function, which can be used to convert between different

Figure 14.33 Components placed on the Visual GLCD screen

446 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

number formats. The function calls a printHandler function, which must be defined

before it is called. String (, ‘%04X’, sum) converts sum into a 4 digit hexadecimal num-

ber. Entering a ‘0’ at the beginning forces the converted number to be padded with 0s if

it is less than 4 digits. Thus, for example, if sum is decimal 25, the converted hexa-

decimal number will be ‘0019’. The digits of the converted number are stored in char-

acter array Txt. After receiving the four hexadecimal characters, array Txt is terminated

with a NULL character to make it a string, and this string is shown in the display part

of the calculator. Another conversion can be done after clearing the screen by touching

the CLR key.

voidPrintHandler(unsigned char c)

{

Txt[q] = c;

q + +;

if(q == 4)

{

Txt[q] = 0x0;

strcpy(DispRes.caption, Txt);

DrawButton(&DispRes);

}

}

voidButtonenterClick() {

q = 0;

strcpy(DispRes.caption, "");

DrawButton(&DispRes);

PrintOut(PrintHandler, "%04X",sum);

}

Notice that variables q, sum and Txt are global and they must be defined at the beginning

of the user code. The complete user code is shown in Figure 14.34.

6. Generate the Code

We are now ready to generate the code for our project. Just click the ‘Generate Code’ icon

in the top menu. You should get a message to say that the code has been generated suc-

cessfully. The generated code can be seen by clicking the ‘Generated Code’ at the bottom

part of the screen.

7. Compile the Code and Load to the Microcontroller

Click the icon ‘Start Compiler’ in the top menu to start the mikroC Pro for PIC compiler.

Compile the program as before, by clicking the ‘Build’ icon in the top menu.

Before compiling the program, make sure that the string library is included in the proj-

ect. To check this, click View -> Library Manager and check ‘C_String’, if it is not

already checked.

Load the program to the microcontroller on the SmartGLCD module using the Boot-

loader, as described in the previous project. After the program is loaded, press the Reset

key. The program should start after about 5 seconds. You should calibrate the screen by

Using the Visual GLCD Software in GLCD Projects 447

www.it-ebooks.info

http://www.it-ebooks.info/

#include "Converter_objects.h"
#include "Converter_resources.h"

//--------------------- User code ---------------------//
unsignedint sum = 0;
unsigned char q;
unsigned char Txt[5];
//----------------- End of User code ------------------//

// Event Handlers
void Button1Click() {
char Txt[2];
sum = 10*sum + 1;
Txt[0] = '1';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button2Click() {
char Txt[2];
sum = 10*sum + 2;
Txt[0] = '2';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button3Click() {
char Txt[2];
sum = 10*sum + 3;
Txt[0] = '3';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button4Click() {
char Txt[2];
sum = 10*sum + 4;
Txt[0] = '4';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button5Click() {
char Txt[2];
sum = 10*sum + 5;
Txt[0] = '5';
Txt[1] = 0x0;

Figure 14.34 Complete user code

448 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button6Click() {
char Txt[2];
sum = 10*sum + 6;
Txt[0] = '6';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button7Click() {
char Txt[2];
sum = 10*sum + 7;
Txt[0] = '7';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button8Click() {
char Txt[2];
sum = 10*sum + 8;
Txt[0] = '8';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button9Click() {
char Txt[2];
sum = 10*sum + 9;
Txt[0] = '9';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

void Button10Click() {
char Txt[2];
sum = 10*sum + 0;
Txt[0] = '0';
Txt[1] = 0x0;
strcat(DispRes.caption, Txt);
DrawButton(&DispRes);
}

voidButtonclrClick() {
strcpy(DispRes.caption, "");

Figure 14.34 (Continued)

Using the Visual GLCD Software in GLCD Projects 449

www.it-ebooks.info

http://www.it-ebooks.info/

sum = 0;
DrawButton(&DispRes);
}

voidPrintHandler(unsigned char c)
{
 Txt[q]=c;
q++;
if(q == 4)
 {
 Txt[q] = 0x0;
strcpy(DispRes.caption, Txt);
DrawButton(&DispRes);
 }
}

voidButtonenterClick() {

 q = 0;

strcpy(DispRes.caption, "");

DrawButton(&DispRes);

PrintOut(PrintHandler, "%04X",sum);

}

Figure 14.34 (Continued)

Figure 14.35 A typical display of the screen after power-up

450 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

touching the bottom left and upper right corners. The calculator should then be displayed

and is ready for use.

Figure 14.35 shows a typical display after power-up and after the screen is calibrated.

Figure 14.36 shows the display when decimal number 254 is entered, and finally, Fig-

ure 14.37 shows the display after the number is converted into hexadecimal.

Figure 14.36 The display when decimal number 254 is entered

Figure 14.37 The display after the number is converted into hexadecimal

Using the Visual GLCD Software in GLCD Projects 451

www.it-ebooks.info

http://www.it-ebooks.info/

14.6 Summary

Visual GLCD is a standalone software package used for the development of GLCD based

projects. With the help of this software, users can create screens and place drag-and-drop

components on these screens. This chapter has described the design of several projects using

the Visual GLCD software. The early projects are based on using the standard 128� 64 pixel

GLCD module. Visual GLCD provides an event driven approach to graphical user based

project design. Users can touch the various components placed on the screen and then associ-

ate codes with these components. These activation codes are in the form of functions that can

be written by users. The use of the SmartGLCD module has been described in the chapter.

This is a standalone hardware incorporating 240� 128 pixel GLCD and a PIC micro-

controller. Projects are given to show how to use the SmartGLCD module in projects.

Exercises

14.1 Design a project having two rectangular shaped components on a GLCD screen.

Label these components as START and STOP. Write a Visual GLCD based program,

such that when the START button is pressed, a buzzer connected to port pin RC7

gives a sound at the frequency of 800 Hz, and when the STOP button is pressed the

buzzer stops sounding.

14.2 Design an integer calculator using the Visual GLCD software and the SmartGLCD

module. The calculator should have the numbers 0 to 9, a clear key and an ENTER

key. In addition, a display should be provided to show results of a calculation. Assume

the four basic mathematical operations ‘þ��/’.

14.3 Design a free-hand screen drawing project using the Visual GLCD software and the

SmartGLCD module. The user should be able to draw lines on the screen by touching

and moving a stylus on the screen.

14.4 Modify the program in (3) above, so that the images created can be saved.

452 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

15

Using the Visual TFT Software
in Graphics Projects

Visual TFT is a standalone software package used for the development of TFT based colour

graphical user interfaces in embedded devices. With the help of the software, users can cre-

ate screens and place drag-and-drop components on these screens, which can be used for

building complex graphical applications. The Visual TFT software generates code compati-

ble with the mikroC Pro for PIC and similar compilers developed by mikroElektronika.

Current version (2.01) of Visual TFT supports the following features:

� 15 graphical user interface components with full colour;
� full colour multiple screens;
� automatic code generation for compilers;
� multiple font support, such as regular, bold, italic, underline and strikeout;
� support for external memory;
� ‘On Press/release’ procedures when objects are clicked (event driven design);
� changing properties of multiple objects at the same time;
� zoom in/out option for each screen generated;
� show/hide grid options;
� print and print preview of current screen.

The Visual TFT software must be installed before it can be used. Download the software

from the mikroElektronika Web site: http://www.visualtft.com. Start up the software by

double clicking on the appropriate icon. The Visual TFT IDE will appear on the screen and

you are now ready to use the software (you may need to have a licence or a dongle to use the

software to full capacity).

Both the Visual GLCD and Visual TFT software packages have similar user interfaces.

The steps to create a graphics application using the Visual TFT are similar to those used

while creating Visual GLCD applications:

1. Create project files.

2. Configure project.

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

3. Add screen and give it a name.

4. Place components on the screen and configure component properties.

5. Assign actions (or events) to components.

6. Generate the code.

7. Compile the code and load to the target microcontroller.

Several examples are given in this chapter, to show how the Visual TFT software can be

used in graphical projects. The first project gives all the steps in detail, while the other

projects simply describe the important points in each project.

The projects described in this chapter are based on the graphics development board called

‘MikroMMB board for PIC18FJ’, developed by mikroElektronika (http://www.mikroe.com).

This is a 8� 6 cm small graphics development board (see Chapter 4), with a built-in

320� 240 pixel colour TFT display on one side, and a PCB with components on the other

side. The board includes everything necessary for creating powerful TFT based graphics

applications. The key features of the board are:

� TFT 320� 240 pixel display with resistive touch panel;
� Display capable of showing data in 262 000 different colours;
� PIC18F87J50 microcontroller;
� 8MHz Crystal oscillator;
� microSD card slot;
� Stereo MP3 coder/decoder (VS1053);
� 3.5mm headphone connector;
� USB mini connector;
� 8 Mbit serial flash memory (M25P80);
� Reset button;
� three axis Accelerometer (ADXL345);
� I/O connection pads.

The board is powered from the USB port and on-board voltage regulators ensure the

appropriate voltage levels to each part of the board. A power LED indicates the presence of

a power supply. The board can also be powered using a Li-Polymer battery, via an on-board

battery connector. The microcontroller on the board can be programmed using the Boot-

loader software loaded to the microcontroller, or external programmers can be used (e.g.

mikroProg or ICD2/3).

In this chapter, we will be using the Bootloader software to load our programs to the

microcontroller on the MikroMMB board. Load and install the PC end of the Bootloader

software from the Web site:

http://www.mikroe.com/eng/products/view/585/mikromedia-for-pic18fj/

15.1 PROJECT 15.1 – Countdown Timer

15.1.1 Project Description

This project describes the design of a countdown timer using the MikroMMB board for

PIC18FJ (from now onwards, this board will be called the MikroMMB board). The screen

454 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

consists of a soft keypad with numbers 0 to 9, a START button, a CLR button and a display

box. The operation of the project is as follows: the user enters a starting number and clicks

the START button. The display counts down in 1 second intervals until the count reaches

zero and then it stops. Clicking the CLR button clears the display and the system is ready for

the next count.

15.1.2 Block Diagram

The block diagram of the MikroMMB board is shown in Figure 15.1. A detailed circuit

diagram can be obtained from the manufacturer’s product guide.

The steps for creating this project are given below:

1. Create Project File

Start the Visual TFT software. Select Project -> New from the top-down menu. Enter

the project name and choose the desired project path. Then click OK. The name

STOPWATCH is given to the project.

2. Configure Project

In the Project Settings window, make the following settings:

15.1.2.1 General (see Figure 15.2)

� Hardware patterns: MikroMMB_for_PIC18FJ_hw_rev_1.05;
� Target Compiler: mikroC Pro for PIC PRO for PIC;

Figure 15.1 Block diagram of the MikroMMB board

Using the Visual TFT Software in Graphics Projects 455

www.it-ebooks.info

http://www.it-ebooks.info/

� Target Device: PIC18F87J50;
� Device Clock (Hz): 48 000 000.

15.1.2.2 TFT (see Figure 15.3)

� TFT_Data_Port: PORTJ TFT_DataPort_Direction: TRISJ
� TFT_RST: LATD4_bit TFT_RST_Direction: TRISD4_bit
� TFT_BLED: LATH5_bit TFT_BLED_Direction: TRISH5_bit
� TFT_RS: LATH6_bit TFT_RS_Direction: TRISH6_bit
� TFT_CS: LATG3_bit TFT_CS_Direction: TRISG3_bit
� TFT_RD: LATH1_bit TFT_RD_Directiion: TRISH1_bit
� TFT_WR: LATH2_bit TFT_WR_Direction: TRISH2_bit

Figure 15.2 General settings

456 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

15.1.2.3 Touch Panel (see Figure 15.4)

READ-X: A/D Channel: 0

READ-Y: A/D Channel: 1

DriveX_Left: LATA0_bit DRIVEX_Left_Direction: TRISA0_bit

DriveY_Right: LATD7_bit DriveY_Right_Direction: TRISD7_bit

DriveY_Up: LATA1_bit DriveY_Up_Direction: TRISA1_bit

DriveY_Down: LATD4_bit DriveY_Down_Direction: TRISD4_bit

Notice that the screen calibration can either be set as ‘Manual’ or ‘Preset’. In this project,

the ‘Manual’ option is chosen so that the screen can be calibrated during the run time.

3. Add Screen and Give it a Name

Give a name to the screen. Let us rename the screen to Screen1. In the Screens Properties

on the left, find the Name property and change it to Screen1. Set the colour to white and

orientation to portrait.

4. Place components

We can now use the Tools displayed on the right-hand side to place components on our

screen. Click ‘Label’, place it on the screen, and change its ‘Caption’ to ‘COUNTDOWN

TIMER’ in the ‘Properties’ window in the bottom left-hand side. Then place the display

on the screen by clicking ‘Rounded Button’ and position it, as shown in Figure 15.5.

Change the name of this button to ‘disp’. Place the keypad on the screen using the

‘Rounded Button’ tools. Change the names of the buttons to reflect the numbers they rep-

resent. Thus, name number 0 as ‘no0’, number 1 as ‘no1’, and so on. Place the START

Figure 15.3 TFT settings

Using the Visual TFT Software in Graphics Projects 457

www.it-ebooks.info

http://www.it-ebooks.info/

and CLR buttons using the ‘Rounded Button’ tool. Change the names of START and CLR

buttons to ‘strt’ and ‘clearkey’, respectively. Notice that you can change the colours of the

components or the screen background colour as you wish.

Notice that the demo version of the Visual TFT is limited to a maximum of 7 objects on

the screen.

Figure 15.4 Touch Panel settings

Figure 15.5 Adding Components onto the Screen

458 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

5. Assign Actions to Components

We can now add actions to our components. Click on number 1, then double click on

‘OnClick’ in the Properties window. An empty event function corresponding to this key

will be displayed. Enter the following code inside the function:

Update(1);

Repeat for all the numbers 0 to 9, by changing the number inside the bracket accord-

ingly. Function ‘Update’ is used to find the final value of the number entered by the user.

This function is created as follows:

void Update(char d)

{

char Txt[4];

sum = 10*sum + d;

ByteToStr(d, Txt);

Ltrim(Txt);

strcat(disp.caption, Txt);

DrawRoundButton(&disp);

}

The final value of the number is stored in variable ‘sum’. The digits entered by the user

are converted into string and are displayed in the display area of the screen.

Click on the CLR button, then double click on ‘OnClick’ in the Properties window and

enter the following statements inside the function. This function clears the display area of

the screen and also clears variable ‘sum’ to zero:

void clearkeyClick()

{

strcpy(disp.caption, "");

DrawRoundButton(&disp);

sum = 0;

}

Finally, click on the START button, then double click on ‘OnClick’ in the Properties

window and enter the following statements inside the function. This function is executed

inside a loop, where variable ‘sum’ is decremented by 1 and a 1 second delay is intro-

duced at each iteration. The value of ‘sum’ is displayed on the display area of the screen

as it counts down to zero.

void strtClick()

{

while(sum != 0)

{

Delay_Ms(1000);

Using the Visual TFT Software in Graphics Projects 459

www.it-ebooks.info

http://www.it-ebooks.info/

#include "stopwatch_objects.h"
#include "stopwatch_resources.h"

//--------------------- User code ---------------------//
char sum = 0;
//----------------- End of User code ------------------//

// Event Handlers
void Update(char d)
{

char Txt[4];
sum = 10*sum + d;
ByteToStr(d, Txt);
Ltrim(Txt);
strcat(disp.cap�on, Txt);
DrawRoundBu�on(&disp);

}

void no1Click() {
Update(1);

}

void no2Click() {
Update(2);

}

void no3Click() {
Update(3);

}

void no4Click() {
Update(4);

}

void no5Click() {
Update(5);

}

void no6Click() {
Update(6);

}

void no7Click() {
Update(7);

}

void no8Click() {
Update(8);

}

Figure 15.6 The code associated with the components

460 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

sum–;

IntToStr(sum, disp.caption);

DrawRoundButton(&disp);

}

}

Figure 15.6 shows the final value of the user code. Notice that variable ‘sum’ is

declared as a global variable at the beginning of the code.

6. Generate the Code

We are now ready to generate the code for our project. Just click the ‘Generate Code’ icon

in the top menu. You should get a message to say that the code has been generated suc-

cessfully. The generated code can be seen by clicking the ‘Generated Code’ at the bottom

part of the screen.

7. Compile the Code and Load to the Microcontroller

Click the icon ‘Start Compiler’ in the top menu to start the mikroC Pro for PIC compiler.

Compile the program as before, by clicking the ‘Build’ icon in the top menu. Make sure that

the string library and the conversions libraries are included in the project. You can check this

by clicking View -> Library Manager and making sure that the boxes next to ‘C_String’ and

‘Conversions’ are checked.

We are now ready to program the microcontroller using the Bootloader software:

� Connect the MikroMMB board to the PC via the USB port.
� Start the MikroMMB Bootloader software on the PC (see Figure 15.7).

void no9Click() {
Update(9);

}

void no0Click() {
Update(0);

}

void clearkeyClick() {
strcpy(disp.cap�on, "");
DrawRoundBu�on(&disp);
sum = 0;

}

void strtClick() {
while(sum != 0)
{
Delay_Ms(1000);
sum--;
IntToStr(sum, disp.cap�on);
DrawRoundBu�on(&disp);

}
}

Figure 15.6 (Continued)

Using the Visual TFT Software in Graphics Projects 461

www.it-ebooks.info

http://www.it-ebooks.info/

� Press the RESET button on the MikroMMB board. Then click the Connect’ button within

5 seconds. You should see the message ‘Connected . . . ’. The microcontroller on the Mik-

roMMB board can now be programed.
� Click ‘Browse for HEX’ and select the ‘.hex’ file of your project.
� Click ‘Begin Uploading’ to program the microcontroller. You should now see a progress

bar as the programming is in progress. When the uploading is finished, click ‘OK’ to exit.
� Reset the MikroMMB board. The display will start after 5 seconds (if during the first 5 sec-

onds after a RESET there is no communication with a PC, then the microcontroller

assumes that this is a normal run and not a programming run).

When the program is run, the user is asked initially to calibrate the screen by touching the

bottom-left and upper-right points of the screen. Figure 15.8 shows a typical display from the

project where the countdown starts from 25 seconds.

15.2 PROJECT 15.2 – Electronic Book

15.2.1 Project Description

This project describes the design of an electronic book, where a number of pages are dis-

played on the screen. In this project, there are three pages for simplicity. Two arrow shaped

buttons are placed at the bottom of the display. Clicking the right-hand arrow displays the

next page (unless it is the last page), while clicking the left-hand arrow displays the previous

page (unless it is the first page).

Figure 15.7 MikroMMB Bootloader software

462 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

The project is given the name BOOK. The MikroMMB board is used in the design, as in

the previous project. The project configuration steps are as in the previous project, and only

the changes are given here.

3. Add Screen and Give it a Name

In this project, the four book pages are converted into images and are displayed on the

screen. A separate screen is assigned to each page. The screens are named as SCREEN1,

SCREEN2 and SCREEN3.

4. Place components

We will now load the pages (images) in our book, with each page loaded to a different

screen. Initially, you can use a word processing package (e.g. Word or Notepad) to create

the pages. In this example, the Microsoft Publisher was used, with Times New Roman and

font size of 8. The number of characters on each line should not exceed 40 and the maxi-

mum number of lines should be no more than 8, leaving space for the buttons at the bot-

tom. After creating each page, you should then convert the pages into image format and

store as separate files, as these files will be loaded to the screens. If using the Microsoft

Publisher, you can save the text as a picture by right clicking on the text.

In this example, the book consists of three pages, with the following text in each page:

15.2.1.1 PAGE 1

Laboratories are a very important part of every engineering course. Students learn the theory

in classes and apply their knowledge into practise by using real equipment in laboratory ses-

sions. For example, electronic engineering students learn the complex theory of transistor

amplifiers in the classroom.

Figure 15.8 Typical display from the project

Using the Visual TFT Software in Graphics Projects 463

www.it-ebooks.info

http://www.it-ebooks.info/

15.2.1.2 PAGE 2

Simulation is an alternative to real experiments. In control engineering, Matlab is the most

widely used software simulation tool. Students can create a model of the system to be simu-

lated by using transfer function blocks, summing points, test inputs, and source and sink

devices. The system model can then be simulated by applying inputs and observing the

response graphically.

15.2.1.3 PAGE 3

Although laboratory experiments are very useful, they have some problems associated with

them:

1. Laboratory equipment can easily be damaged, for example by dropping or by misusing

them.

2. The characteristics of real equipment can change with ageing and temperature.

3. Laboratory equipment is costly to purchase and maintain.

In the screen Properties window on the left, set screen colour to White, and orientation to

Landscape. Click the Image tool and place it on the screen. Click next to Picture Name in

Properties, and select the first page image of the book from the appropriate directory. Posi-

tion the image to fit the screen. Next, click the Rounded Button tool and place a button at the

bottom right-hand side of the image. Change the caption of this button to be ‘NEXT ->’, as

shown in Figure 15.9.

Now, create a new screen by clicking on the green ‘þ ’ Add Screen tool placed at the

top of the menu. Set the screen colour to White and the orientation to Landscape as

before. Add the second page image to the screen, and this time place two buttons at the

bottom of the screen, as shown in Figure 15.10, so that we can navigate to the next or the

previous screens.

Finally, place the last page image and add a button, as shown in Figure 15.11, so that we

can navigate back to the previous page.

Figure 15.9 Adding the first page image to the screen

464 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

5. Assign Actions to Components

We can now assign actions to our components. When the display is reset, after calibrating

the screen, the first image will automatically be displayed, since the StartScreen property

of this screen is set to True. Now, we have to assign an action to the ‘NEXT ->’ button, so

that when this button is pressed, the next image is displayed. Click on the ‘NEXT ->’

button, and then double click on ‘OnClick’ in the Properties window. An empty event

function corresponding to this button will be displayed. Enter the following code inside

the function, so that the second image will be displayed when the button is clicked:

DrawScreen(&Screen2);

Select Screen2 and click on ‘<- Previous’ button. Double click on ‘OnClick’ in the Prop-

erties window and enter the following code:

DrawScreen(&Screen1);

Figure 15.10 Adding the second image to the screen

Figure 15.11 Adding the last image

Using the Visual TFT Software in Graphics Projects 465

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, click on the ‘NEXT ->’ button, double click on ‘OnClick’ in the Properties

window and enter the following code, so that the third image is displayed when the button is

pressed:

DrawScreen(&Screen3);

Finally, select Screen3 and click on ‘<- Previous’ button. Double click on ‘OnClick’

in the Properties window and enter the following code, so that the previous page image

(image 2) is displayed when the button is clicked:

DrawScreen(&Screen2);

Figure 15.12 shows all the user action codes.

6. Generate the Code

We are now ready to generate the code for our project. Just click the ‘Generate Code’ icon

in the top menu. You should get a message to say that the code has been generated suc-

cessfully. The generated code can be seen by clicking the ‘Generated Code’ at the bottom

part of the screen.

7. Compile the Code and Load to the Microcontroller

Click the icon ‘Start Compiler’ in the top menu to start the mikroC Pro for PIC compiler.

Compile the program as before by clicking the ‘Build’ icon in the top menu. Load the

#include "BOOK_objects.h"
#include "BOOK_resources.h"

//--------------------- User code ---------------------//

//----------------- End of User code ------------------//

// Event Handlers

void Bu�onRound1Click() {
DrawScreen(&Screen2);

}

void Bu�onRound3Click() {
DrawScreen(&Screen1);

}

void Bu�onRound2Click() {
DrawScreen(&Screen3);

}

void Bu�onRound4Click() {
DrawScreen(&Screen2);

}

Figure 15.12 User action codes

466 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

program into the program memory of the microcontroller, using the Bootloader software as

described in the previous project. Press the reset button on the display board to start the proj-

ect. After calibrating the screen, you should see the first image displayed and you should be

able to navigate to other images by clicking the appropriate buttons.

Figure 15.13 shows a typical display on the screen.

15.3 PROJECT 15.3 – Picture Show

15.3.1 Project Description

This project describes the design of a slide show where a number of images (four in this

project) are stored on a mikroSD card and are displayed on the TFT screen with a delay

between each display. The MikroMMB board is used in the design, as in the previous project.

The project is named ‘PICTURE_SHOW’. The project configuration steps are as in the pre-

vious project. In addition, the Resources window in Settings should be configured as below

(see Figure 15.14), to define the interface between the mikroSD card and the MikroMMB

board (you may find that this window is already configured when the external resource is

clicked):

Store resources: Externally

SelectMedia: MMC

Global Declarations:

sbit Mmc_Chip_Select at LATD0_bit;

sbit Mmc_Chip_Select_Direction at TRISD0_bit;

Init Code:

SPI1_Init_Advanced(_SPI_MASTER_OSC_DIV64, _SPI_DATA_SAMPLE_MIDDLE,

_SPI_CLK_IDLE_LOW, _SPI_LOW_2_HIGH);

Delay_ms(10);

Figure 15.13 A typical display

Using the Visual TFT Software in Graphics Projects 467

www.it-ebooks.info

http://www.it-ebooks.info/

Get Data Code:

char* TFT_Get_Data(unsigned long offset, unsigned int count, unsigned int

*num) {

unsigned long start_sector;

unsigned int pos;

start_sector = Mmc_Get_File_Write_Sector() + offset/512;

pos = (unsigned long)offset%512;

if(start_sector == currentSector + 1) {

Mmc_Multi_Read_Sector(Ext_Data_Buffer);

currentSector = start_sector;

} else if (start_sector != currentSector) {

if(currentSector != -1)

Mmc_Multi_Read_Stop();

Mmc_Multi_Read_Start(start_sector);

Mmc_Multi_Read_Sector(Ext_Data_Buffer);

currentSector = start_sector;

}

if(count>512-pos)

*num = 512-pos;

else

*num = count;

return Ext_Data_Buffer + pos;

}

Figure 15.14 Resources window

468 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

3. Add Screen and Give it a Name

In this project, we have two screens: the startup screen, and the screen where the pictures

are to be displayed. The startup screen will simply have a button and pressing this button

will start the picture show. Rename the startup screen as Screen1, and set screen colour to

White, with orientation set to Landscape.

4. Place components

Place a Label on Screen1 and change its caption to ‘PICTURE SHOW’. Also, place a

Round button on this screen, and change its caption to ‘Start the Show’. Figure 15.15

shows the Screen1 layout.

Create a new screen by clicking the green ‘þ ’ toolbar. Rename this as Screen2 and set

its orientation to Landscape. We will now load the images in our picture show. Make sure

that the images are Bitmap images with extensions ‘.BMP’ and that they have the pixel

sizes 320� 240. Rotate the pictures by 90� clockwise, so that they will fit the screen

nicely. There are many programs available to rotate images and to convert them to differ-

ent sizes (e.g. FastStone Image Viewer).

In this example, four images are selected at random from the Internet for demonstration

purposes. These images are converted to 320� 240 pixels and then rotated by 90� and

stored in a directory on the PC.

Click the Image tool and place it on the screen. Click next to Picture Name and select

the first picture of the picture show from the appropriate directory. Position the image to

fit the screen (see Figure 15.16). Next, click the Image tool again and place it on the

screen on top of the existing image. Select the second image from the appropriate direc-

tory by clicking next to Picture Name and again position the image to fit the screen.

Repeat this process until all the images are placed on the screen. As you place images on

the screen, only the last image will be visible. At the end, click the list box under the

Components window on the middle left part of the screen. You should see all the image

names that are loaded to the screen.

Click ‘Generate Code’ in the top menu of the screen. All the images are now compiled

and stored in a file called the Resource file. This file is used to store fonts and images in

the microcontroller code memory or in an external memory device, such as a mikroSD

card. You should now format a mikroSD card with the FAT16 filing system and copy the

Resource file to the card. The SD card should be less than 2 GB in size. Click the button

Figure 15.15 Screen1 layout

Using the Visual TFT Software in Graphics Projects 469

www.it-ebooks.info

http://www.it-ebooks.info/

named ‘Locate resource file’, located at the bottom right-hand side of the screen, to find

the resource file. The resource file is the one with extension ‘.RES’ attached to the 8 char-

acter project name. For this project, the resource file is ‘PICTURE_.RES’, and this file

must be copied to the mikroSD card.

5. Assign Actions to Components

We can now assign actions to our components. When the display is reset, and after cali-

brating the screen, the pictures will be displayed with a delay between each display.

Before assigning actions to components, we need to know the external addresses of the

images in our project. This can be obtained from the file PICTURE_SHOW_RESOUR-

CES.C in our project. Click ‘Locate resource file’ and then right click on this file and

choose the edit option to see the contents of the file. The addresses of the images for this

project are found to be:

const unsigned long image1_bmp = 0x0000071C;

const unsigned long image2_bmp = 0x00025F22;

const unsigned long image3_bmp = 0x0004B728;

const unsigned long image4_bmp = 0x00070F2E;

We shall be using these addresses to display the images.

Click on the Round button in Screen1. Double click ‘OnClick’ in the Properties win-

dow to assign action to this button. Enter the following code in the function body:

void ButtonRound1Click() {

for(;;)

{

TFT_Ext_Image(0, 0, Images[Cnt], 1);

Delay_Ms(10 000);

Figure 15.16 Adding an image to the screen

470 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Cnt + +;

if(Cnt == 4)Cnt =0;

}

}

and enter the following code in the user code section:

const unsigned long Images[] = {0x0000071C, 0x00025F22, 0x0004B728,

0x00070F2E};

unsigned char Cnt = 0;

The addresses of the images are stored in an array called Images, and a variable called

Cnt is declared and initialised to 0. When the ‘Start the Show’ button is clicked, function

ButtonRound1Click will be called. Inside this function, an endless loop is formed using a

for statement. TFT library function TFT_Ext_Image is called to display an image. The

address of the image to be displayed is specified by indexing array Images with variable

Cnt. Thus, initially the first image is displayed. Then after 10 seconds delay, variable Cnt

is incremented by 1 and the second image is displayed, and so on. After displaying the

last image (Cnt¼ 4), variable Cnt is reset to 0 to display the first image again and this

process continues forever.

Figure 15.17 shows the final form of the user action code.

6. Compile the Code and Load to the Microcontroller

Click the icon ‘Start Compiler’ in the top menu to start the mikroC Pro for PIC compiler.

Compile the program as before, by clicking the ‘Build’ icon in the top menu. Make sure

that the SD card library is included in the build process. To check this, display the Library

Manager by clicking View -> Library Manager at the top menu. Tick boxes ‘Mmc’,

‘Mmc_FAT16’ and ‘Mmc_FAT16_Config’, if they are not already ticked. Now, we are ready

#include "PICTURE_SHOW_objects.h"
#include "PICTURE_SHOW_resources.h"

//--------------------- User code ---------------------//
const unsigned long images[] = {0x0000071C,0x00025F22,0x0004B728,0x00070F2E};
unsigned char Cnt = 0;
//----------------- End of User code ------------------//

// Event Handlers

void Bu�onRound1Click() {
for(;;)
{

TFT_Ext_Image(0, 0, Images[Cnt], 1);
Delay_Ms(10000);
Cnt++;
if(Cnt == 4)Cnt =0;

}
}

Figure 15.17 The user action code

Using the Visual TFT Software in Graphics Projects 471

www.it-ebooks.info

http://www.it-ebooks.info/

to program the microcontroller using the Bootloader software, as described in the previous

project.

After the programming is finished, reset the MikroMMB board. The display will start

after 5 seconds. When the program is run, the user is asked initially to calibrate the screen by

touching the bottom-left and upper-right points of the screen. Now, the pictures will be dis-

played as a picture show, with 10 seconds delay between each output.

15.4 Summary

This chapter has described how to use the Visual TFT software. Visual TFT is a standalone

software package used for the development of TFT based colour GLCD projects. The soft-

ware can be used with a number of TFT based GLCD modules. In this chapter, the

‘MikroMMB board for PIC18FJ’ has been used as the hardware development environment.

Several tested and working projects have been given in the chapter, to show how to design

colour graphics based projects.

Exercises

15.1 Design an integer calculator using the Visual TFT software and the MikroMMB board

for PIC18FJ. Experiment using different colours in your screen design.

15.2 Describe the steps necessary for using the Visual TFT software to design a GLCD

based project.

15.3 Design a slide show using the Visual TFT software and the MikroMMB board for

PIC18FJ. Use your family photos in the slide show.

15.4 Design a calculator to convert �C into �F and vice versa, using the Visual TFT soft-

ware and the MikroMMB board for PIC18FJ. A button should be available on the

screen to choose the type of conversion required.

472 Using LEDs, LCDs and GLCDs in Microcontroller Projects

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography

1. Microchip Inc. web site: http://www.microchip.com.

2. Mikroelektronika web site: http://www.mikroe.com.

3. Custom Computer Systems Inc� web site: http://www.ccsinfo.com.

4. mikroEngineering Labs Inc web site: http://www.melabs.com.

5. Futurlec web site: http://www.futurlec.com.

6. SensirionInc web site: http://www.sensirion.com.

7. LM35DZ data sheet web site: http://www.national.com.

8. Hi-Tech Software web site: http://www.htsoft.com.

9. KS0108 controller data sheet web site: http://www.techtoys.com.hk/Displays/JHD12864J/ks0108.pdf

�(readers who link to web site www.ccsinfo.com/DIbookwill be given to a discount by Custom Computer Systems

Inc for their hardware and software products)

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
� 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

Index

ADC, 5, 43

ADCON0, 45

ADCON1, 45

ADCON2, 47

ADRESH, 47

ADRESL, 47

Alphanumeric LED, 159

ALU, 5

Analog comparator, 5

Analog to digital converter, 5, 43

Anode, 152

ANSI C library, 109

Array pointer, 75

Arrays, 70

numeric, 70

character, 72

of strings, 73

Arrays of strings, 73

Arithmetic operator, 81

Aspect ratio, 15

Assignment operator, 86

BASIC, 59

BEGIN, 206

Bi-colour LED, 154

Bitmap editor, 198

Bitmap image, 347

Bits of a variable, 69

bitwise operator, 83

bit type, 70

break, 92

Break point, 124

Brightness, 15

Brown-out detector, 5

Bus, 5

Bootloader, 461

Built-in functions, 108

Busy flag, 174

Button, 238

ByteToStr, 111

CAN, 6

Cathode, 152

CCP1CON, 54

CCS C compiler, 60

char, 65

Character arrays, 72

CGRAM, 168

CGROM, 168

CISC, 6

Clock, 6

Clock_Khz, 108

Clock_Mhz, 108

Code assistant, 112

Code editor, 42

Code explorer window, 115

Comments, 61

Common anode, 157

Common cathode, 157

Conditional operator, 87

CONFIG1H, 48

CONFIG2H, 49

Configuration register, 48

const, 66

Using LEDs, LCDs and GLCDs in Microcontroller Projects, First Edition. Dogan Ibrahim.
2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

Constant string, 73

Constants, 66

Contrast ratio, 15

CPU, 6

Crystal, 24

Current limiting resistor, 152

Current sinking, 220

Current sourcing, 220

Custom font, 315

Data memory, 21

DDRAM, 169

Debounce, 238

Debugger, 145

Delay_ms, 108

Delay_us, 108

Digital voltmeter, 325

Display software tools, 143

font creation tools, 143

display library tools, 144

visual display tools, 144

Display timing, 171

do, 97

Dot pitch, 15

DSTN, 14

Duty cycle, 54

EasyPIC6, 137

EasyPIC7, 139

EEPROM, 6

else, 91

END, 206

ENDDO, 207

enum, 68

Enumarated constant, 67

EPROM, 6

Escape sequence, 68

Ethernet, 7

Event counter, 285, 292

External clock, 28

External reset, 31

Flash memory, 7

float, 65

Floating point, 65

Floating point constant, 67

Flow chart, 206

Flow of control, 90

for, 99

FOREVER, 208

Forward current, 151

FSTN, 14

Functions, 101

built-in, 108

name, 102

passing arrays to, 106

passing parameters to, 104

type, 102

void, 103

Function prototype, 102

GLCD, 185

Block diagram, 186

Connection to microcontroller, 188

Display coordinates, 189

Operation, 187

Pin configuration, 186

Structure, 188

Glcd_Box, 193

Glcd_Circle, 193

Glcd_Circle_Fill, 194

Glcd_Dot, 191

Glcd_Fill, 190

Glcd_Init, 189

Glcd_Line, 191

Glcd_Rectangle, 192

Glcd_Rectangle_Round_Edges, 192

Glcd_Rectangle_Round_Edges_Fill,

192

Glcd_Set_Font, 194

Glcd_Set_Font_Adv, 194

Glcd_Set_Side, 190

Glcd_Set_X, 190

Glcd_H_Line, 191

Glcd_Image, 196

Glcd_V_Line, 191

Glcd_Write_Char, 195

Glcd_Write_Char_Adv, 195

Glcd_Write_Const_Text_Adv, 196

Glcd_Write_Data, 190

Glcd_Write_Text, 195

Glcd_Write_Text_Adv, 195

Goto, 101

Harvard architecture, 7, 17

HD44780 controller, 165

Hi, 108

Higher, 108

476 Index

www.it-ebooks.info

http://www.it-ebooks.info/

Highest, 108

Humidity sensor, 385

ICD-U40, 61

Idle mode, 7

if, 91

In-circuit debugger, 145

int, 65

INTCON, 50, 51

INTCON2, 50, 52

INTCON3, 50, 52

Integer constant, 66

Internal oscillator, 27

Interrupts, 7, 49

Interrupt processing, 106

IPEN, 53

I/O port, 31

Keypad, 446

Keypad_init, 337

Keypad_key_click, 337

Keypad_key_press, 337

KS107/108, 347

LATA, 33

LATB, 35

LATC, 37

LCD, 165

1� 16, 166

4� 16, 166

character set, 168

contrast, 167

pins, 166

Lcd_Init, 180

Lcd_Chr, 181

Lcd_Chr_Cp, 181

Lcd_Cmd, 182

Lcd_Out, 181

LED, 151

LED

14 segment, 160

alphanumeric, 159

common anode, 157

common cathode, 157

construction, 152

decoding, 162

editor, 163

encoding, 158

microC PRO, 163

multi digit, 159

LED bar, 155

LED candle, 264

LED colours, 153

LED dice, 240

LED dot matrix, 156

LED sizes, 154

Library manager window, 115

LM35DZ, 330

Lo, 108

Logical operators, 82

long, 65

Math library, 110

MCLR, 30

Message window, 115

mikroICD, 145

mikroMedia, 142, 454

component side, 143

MikroMMB board for PIC18FJ, 454

Numeric arrays, 70

OLED, 12

Operators, 80

arithmetic, 81

assignment, 86

bitwise, 83

conditional, 87

logical, 82

relational, 85

OSC1, 24

OSC2, 24

OSCCON, 28

Oscillator configuration, 24

Paint program, 347

Parallel I/O port, 31

Parameter assistant, 114

PASCAL, 59

PDL, 205

Phase locked loop, 28

PIC18 explorer board, 132

PIC18F4XK20 starter kit, 134

PICC18 compiler, 60

PICDEM 4, 135

Pipeline, 8

PLL, 28

Pointer arithmetic, 74

Index 477

www.it-ebooks.info

http://www.it-ebooks.info/

Pointers, 73

array, 75

in string operations, 76

POR, 30

PORTA, 33

PORT B, 35

PORT C, 36

PORT E, 37

Power on reset, 8

Pre-processor, 87

#define, 88

#elif. 90

#endif, 90

#if, 90

#ifndef, 88

#include, 89

#undef, 88

Pressure sensor, 330

Program memory, 21

Project manager window, 117

Project settings window, 115

PROM, 8

Pulse width modulator, 53

PWM, 53

PWM duty cycle, 54

PWM period, 53

RAM, 8

RCON, 50

Real time clock, 8

Reflective, 15

Register, 9

Relational operators, 85

REPEAT, 209

Repetition, 95

Reset, 30

Reserved names, 64

Resistive touch screen, 200

Resolution, 15

Resonator, 24

Response time, 15

RISC, 9

ROM, 9

Rotating LEDs, 229

Routine list window, 115

sbit, 70

Selection statements, 91

Seven segment LDE, 156

SHT11, 385

signed char, 65

signed int, 65

Simulator, 123

sizeof, 79

Sleep mode, 9

SmartGLCD, 430

back panel, 142

front panel, 142

STN, 14

Strings, 72

String constants, 67

Structures, 76

accessing, 78

arrays of, 79

bit fields, 79

copying, 78

initialising, 78

size of, 79

Super bundle development kit, 133

Supply voltage, 10

switch, 92

Temperature sensor, 330

TFT, 14

TIMER0, 38

TIMER1, 40

TIMER2, 41

TIMER3, 43

Timer module, 38

TMR0L, 38

TMR0H, 38

Touch screen, 199, 401

Transflective, 15

Transmissive, 15

Tri-colour LED, 155

TRISA, 33

TRISB, 35

TRISC, 37

Twisted nematic, 14

Unions, 80

unsigned char, 65

unsigned int, 65

unsigned long int, 65

UNTIL, 209

USART terminal, 127

USB, 10

Variable name, 63

Variable type, 64

478 Index

www.it-ebooks.info

http://www.it-ebooks.info/

Vdelay_ms, 108

View angle, 15

Visual GLCD, 419

Visual TFT, 453

Void function, 103

Volatile variables, 69

Watchdog, 10

White space, 63

while, 95

WREG, 19

XT, 24

Index 479

www.it-ebooks.info

http://www.it-ebooks.info/

