CD-ROM Included ‘

/o
; “ Y. :
;.' -__“""I_\l:_f] dl TH”HH_
' by Example
/ f 5 e
. ', / * y Tool Usage for Simulation, Synthesis,
A ‘IJ o

].

L001s for Stmulation, b_}fnrbe.w.lf, and A bpm:} Uﬁlﬂrﬂ:glg:}:;rg
CD-ROM includes Working Demo of Tools

VHDL.:
Programming
by Example

Douglas L. Perry

Fourth Edition

McGraw-Hill
New York ¢ Chicago » San Francisco ¢ Lisbon ¢ London
Madrid « Mexico City » Milan « New Delhi ¢« San Juan
Seoul » Singapore ¢ Sydney Toronto

McGraw-Hill s

A Division of The McGraw-Hill Companies

Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-140070-2

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare @mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071409548

This Book is Dedicated to
my wife Debbie and my son Brennan

Thank you for your patience and support

This page intentionally left blank.

CONTENTS

Foreword xiii
Preface xv
Acknowledgments xviii

Chapter 1 Introduction to VHDL

VHDL Terms

Describing Hardware in VHDL

Entity
Architectures
Concurrent Signal Assignment
Event Scheduling
Statement Concurrency
Structural Designs
Sequential Behavior
Process Statements
Process Declarative Region
Process Statement Part
Process Execution
Sequential Statements
Architecture Selection
Configuration Statements
Power of Configurations

Chapter 2 Behavioral Modeling

Introduction to Behavioral Modeling
Transport Versus Inertial Delay
Inertial Delay
Transport Delay
Inertial Delay Model
Transport Delay Model
Simulation Deltas
Drivers
Driver Creation
Bad Multiple Driver Model
Generics
Block Statements
Guarded Blocks

—

VO VY O NGO UV AW WN

15

16
20
20
21
22
23
23
27
27
28
29
31
35

Vi

Chapter 3

Chapter 4

Chapter 5

Contents

Sequential Processing 39
Process Statement 40
Sensitivity List 40
Process Example 40
Signal Assignment Versus Variable Assignment 42
Incorrect Mux Example 43
Correct Mux Example 45
Sequential Statements 46
IF Statements 47
CASE Statements 48
LOOP Statements 50
NEXT Statement 53
EXIT Statement 54
ASSERT Statement 56
Assertion BNF 57
\WAIT Statements 59
\XAIT ON Signal 62
\X/AIT UNTIL Expression 62
\XAIT FOR time_expression 62
Multiple WAIT Conditions 63
\WAIT Time-Out 64
Sensitivity List Versus WAIT Statement 66
Concurrent Assignment Problem 67
Passive Processes 70
Data Types 73
Object Types 74
Signal 74
Variables 76
Constants 77
Data Types 78
Scalar Types 79
Composite Types 86
Incomplete Types 98
File Types 102
File Type Caveats 105
Subtypes 105
Subprograms and Packages 109
Subprograms 110

Function 110

Contents

Chapter 6

Chapter 7

Conversion Functions
Resolution Functions
Procedures

Packages
Package Declaration
Deferred Constants
Subprogram Declaration
Package Body

Predefined Attributes

Value Kind Attributes
Value Type Attributes
Value Array Attributes
Value Block Attributes
Function Kind Attributes
Function Type Attributes
Function Array Attributes
Function Signal Attributes
Attributes 'EVENT and ‘LAST_VALUE
Attribute ‘LAST_EVENT
Attribute ‘ACTIVE and 'LAST_ACTIVE
Signal Kind Attributes
Attribute ‘DELAYED
Attribute 'STABLE
Attribute ‘QUIET
Attribute TRANSACTION
Type Kind Attributes
Range Kind Attributes

Configurations

Default Configurations

Component Configurations
Lower-Level Configurations
Entity-Architecture Pair Configuration
Port Maps

Mapping Library Entities

Generics in Configurations

Generic Value Specification in Architecture

Generic Specifications in Configurations

Board-Socket-Chip Analogy

Block Configurations

Architecture Configurations

Vil

113
119
133
135
136
136
137
138

143

144
144
147
149
151
151
154
156
157
158
160
160
161
164
166
168
169
170

173

174
176
179
180
181
183
185
188
190
195
199
201

Viii

Chapter 8

Chapter 9

Chapter 10

Advanced Topics

Overloading

Subprogram Overloading

Overloading Operators
Aliases
Qualified Expressions
User-Defined Attributes
Generate Statements

Irregular Generate Statement
TextlO

Synthesis

Register Transfer Level Description
Constraints

Timing Constraints

Clock Constraints
Attributes

Load

Drive

Arrival Time
Technology Libraries
Synthesis

Translation

Boolean Optimization

Flattening

Factoring

Mapping to Gates

VHDL Synthesis

Simple Gate — Concurrent Assignment

IF Control Flow Statements

Case Control Flow Statements

Simple Sequential Statements

Asynchronous Reset

Asynchronous Preset and Clear

More Complex Sequential Statements
Four-Bit Shifter

State Machine Example

Contents

205

206
206
210
215
215
218
220
222
224

231

232
237
238
238
239
240
240
240
241
243
243
244
245
246
247

251

252
253
256
257
259
261
262
264
266

Contents

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

High Level Design Flow

RTL Simulation

VHDL Synthesis

Functional Gate-Level Verification
Place and Route

Post Layout Timing Simulation
Static Timing

Top-Level System Design

CPU Design
Top-Level System Operation
Instructions
Sample Instruction Representation
CPU Top-Level Design

Block Copy Operation

CPU: Synthesis Description

ALU
Comp
Control
Reg
Regarray
Shift
Trireg

CPU: RTL Simulation

Testbenches
Kinds of Testbenches
Stimulus Only
Full Testbench
Simulator Specific
Hybrid Testbenches
Fast Testbench

CPU Simulation

CPU Design: Synthesis Results

273

275
277
283
284
286
287

289

290
290
291
292
293
299

303

306
309
311
321
322
324
326

329

330
331
333
337
340
342
345
349

357

Chapter 16

Chapter 17

Chapter 18

Place and Route

Place and Route Process
Placing and Routing the Device
Setting up a project

CPU: VITAL Simulation

VITAL Library
VITAL Simulation Process Overview
VITAL Implementation
Simple VITAL Model
VITAL Architecture
\Wire Delay Section
Flip-Flop Example
SDF File
VITAL Simulation
Back-Annotated Simulation

At Speed Debugging Techniques

Instrumentor
Debugger
Debug CPU Design
Create Project
Specify Top-Level Parameters
Specify Project Parameters
Instrument Signals
\Write Instrumented Design
Implement New Design
Start Debug
Enable Breakpoint
Trigger Position
\X¥/aveform Display
Set Watchpoint
Complex Triggers

Appendix A Standard Logic Package

Appendix B VHDL Reference Tables

Appendix C Reading VHDL BNF

Contents

369

370
373
373

379

381
382
382
383
386
386
388
392
394
397

399

401
401
401
402
403
403
404
405
405
406
406
408
408
409
410

413

435

445

Contents

Appendix D VHDL93 Updates

Alias
Attribute Changes
Bit String Literal
DELAY_LENGTH Subtype
Direct Instantiation
Extended Identifiers
File Operations
Foreign Interface
Generate Statement Changes
Globally Static Assignment
Groups
Incremental Binding
Postponed Process
Pure and Impure Functions
Pulse Reject
Report Statement
Shared Variables
Shift Operators
SLL — shift left logical
SRL — shift right logical
SLA —sshift left arithmetic
SRA — shift right arithmetic
ROL — rotate left
ROR —rrotate right
Syntax Consistency
Unaffected
XNOR Operator

About the Author 477

XI

449

449
450
452
452
452
453
454
455
456
456
457
458
459
460
460
461
461
463
463
463
463
463
464
464
464
466
466

This page intentionally left blank.

FOREWORD

VHDL has been at the heart of electronic design productivity since ini-
tial ratification by the IEEE in 1987. For almost 15 years the electronic
design automation industry has expanded the use of VHDL from initial
concept of design documentation, to design implementation and func-
tional verification. It can be said that VHDL fueled modern synthesis
technology and enabled the development of ASIC semiconductor compa-
nies. The editions of Doug Perry’s books have served as the authoritative
source of practical information on the use of VHDL for users of the
language around the world.

The use of VHDL has evolved and its importance increased as semi-
conductor devices dimensions have shrunk. Not more than 10 years ago it
was common to mix designs described with schematics and VHDL. But as
design complexity grew, the industry abandoned schematics in favor of the
hardware description language only. The successive revisions of this book
have always kept pace with the industry’s evolving use of VHDL.

The fact that VHDL is adaptable is a tribute to its architecture. The
industry has seen the use of VHDL'’s package structure to allow design-
ers, electronic design automation companies and the semiconductor indus-
try to experiment with new language concepts to ensure good design tool
and data interoperability. When the associated data types found in the
IEEE 1164 standard were ratified, it meant that design data interoper-
ability was possible.

All of this was facilitated by industry backing in a consortium of systems,
electronic design automation and semiconductor companies now known
as Accellera.

And when the ASIC industry needed a standard way to convey gate-
level design data and timing information in VHDL, one of Accellera’s
progenitors (VHDL International) sponsored the IEEE VHDL team to
build a companion standard. The IEEE 1076.4 VITAL (VHDL Initiative
Towards ASIC Libraries) was created and ratified as offers designers a
single language flow from concept to gate-level signoff.

In the late '90s, the Verilog HDL and VHDL industry standards teams
collaborated on the use of a common timing data such as IEEE 1497 SDF,
set register transfer level (RTL) standards and more to improve design

XV

Foreword

methodologies and the external connections provided to the hardware
description languages.

But from the beginning, the leadership of the VHDL community has
assured open and internationally accredited standards for the electronic
design engineering community. The legacy of this team’s work continues
to benefit the design community today as the benchmark by which one
measures openness.

The design community continues to see benefits as the electronic design
automation community continues to find new algorithms to work from
VHDL design descriptions and related standards to again push designer
productivity. And, as a new generation of designers of programmable logic
devices move to the use of hardware description languages as the basis of
their design methodology, there will be substantial growth in the number
of VHDL users.

This new generation of electronic designers, along with the current
designers of complex systems and ASICs, will find this book as invalu-
able as the first generation of VHDL users did with the first addition.
Updated with current use of the standard, all will benefit from the years
of use that have made the VHDL language the underpinning of successful
electronic design.

Dennis B. Brophy
Chair, Accellera

PREFACE

This is the fourth version of the book and this version now not only provides
VHDL language coverage but design methodology information as well. This
version will guide the reader through the process of creating a VHDL
design, simulating the design, synthesizing the design, placing and routing
the design, using VITAL simulation to verify the final result, and a new
technique called At-Speed debugging that provides extremely fast design
verification. The design example in this version has been updated to reflect
the new focus on the design methodology.

This book was written to help hardware design engineers learn how to
write good VHDL design descriptions. The goal is to provide enough VHDL
and design methodology information to enable a designer to quickly write
good VHDL designs and be able to verify the results. It will also attempt
to bring the designer with little or no knowledge of VHDL, to the level of
writing complex VHDL descriptions. It is not intended to show every pos-
sible construct of VHDL in every possible use, but rather to show the de-
signer how to write concise, efficient, and correct VHDL descriptions of
hardware designs.

This book is organized into three logical sections. The first section of the
book will introduce the VHDL language, the second section walks through
a VHDL based design process including simulation, synthesis, place and
route, and VITAL simulation; and the third section walks through a design
example of a small CPU design from VHDL capture to final gate-level
implementation, and At-Speed debugging. At the back of the book are
included a number of appendices that contain useful information about the
language and examples used throughout the book.

In the first section VHDL features are introduced one or more at a time.
As each feature is introduced, one or more real examples are given to show
how the feature would be used. The first section consists of Chapters 1
through 8, and each chapter introduces a basic description capability of
VHDL. Chapter 1 discusses how VHDL design relates to schematic based
design, and introduces the basic terms of the language. Chapter 2 describes
some of the basic concepts of VHDL, including the different delay mecha-
nisms available, how to use instance specific data, and defines VHDL dri-
vers. Chapter 2 discusses concurrent statements while Chapter 3 introduces
the reader to VHDL sequential statements. Chapter 4 talks about the wide

XVI

Preface

range of types available for use in VHDL. Examples are given for each of
the types showing how they would be used in a real example. In Chapter
5 the concepts of subprograms and packages are introduced. The different
uses for functions are given, as well as the features available in VHDL
packages.

Chapter 6 introduces the five kinds of VHDL attributes. Each attribute
kind has examples describing how to use the specific attribute to the
designer’s best advantage. Examples are given which describe the pur-
pose of each of the attributes.

Chapters 7 and 8 will introduce some of the more advanced VHDL
features to the reader. Chapter 7 discusses how VHDL configurations
can be used to construct and manage complex VHDL designs. Each of
the different configuration styles are discussed along with examples
showing usage. Chapter 8 introduces more of the VHDL advanced top-
ics with discussions of overloading, user defined attributes, generate
statements, and TextIO.

The second section of the book consists of Chapters 9 through 11. Chap-
ters 9 and 10 discuss the synthesis process and how to write synthesiz-
able designs. These two chapters describe the basics of the synthesis
process including how to write synthesizeable VHDL, what is a technol-
ogy library, what does the synthesis process look like, what are con-
straints and attributes, and what does the the optimization process look
like. Chapter 11 discusses the complete high level design flow from VHDL
capture through VITAL simulation.

The third section of the book walks through a description of a small
CPU design from the VHDL capture through simulation, synthesis, place
and route, and VITAL simulation. Chapter 12 describes the top level of
the CPU design from a functional point of view. In Chapter 13 the RTL
description of the CPU is presented and discussed from a synthesis point
of view. Chapter 14 begins with a discussion of VHDL testbenches and
how they are used to verify functionality. Chapter 14 finishes the discus-
sion by describing the simulation of the CPU design. In Chapter 15 the
verified design is synthesized to a target technology. Chapter 16 takes
the synthesized design and places and routes the design to a target
device. Chapter 17 begins with a discussion of VITAL and ends with the
VITAL simulation of the placed and routed CPU design. Chapter 18 is a
new chapter that discusses the new technique of At-Speed debugging.
This chapter provides the reader with an in-depth look at how a hardware
implementation of the CPU design can help speed verification.

Finally there are three appendices at the end of the book to provide ref-
erence information. Appendix A is a listing of the IEEE 1164 STD_LOGIC

Preface

XVIi

package used throughout the book. Appendix B is a set of useful tables
that condense some of the information in the rest of the book into quick
reference tables. Finally, Appendix C describes how to read the Bachus-
Naur format(BNF) descriptions found in the VHDL Language Reference
Manual. I can only hope that you the reader will have as much fun read-
ing this book and working with VHDL as I did in writing it.

ACKNOWLEDGMENTS

This book would not have been possible without the help of a number of
people, and I would like to express my gratitude to all of them. Rod Far-
row, Cary Ussery, Alec Stanculescu, and Ken Scott answered a multitude
of questions about some of the vagaries of VHDL. Mark Beardslee and
Derek Palmer for their review of parts of the third edition. Their com-
ments were both helpful and insightful. Paul Krol developed the chart in
Chapter 7 that describes generics. Keith Irwin helped define the style of
some of the chapters. Hoa Dinh and David Emrich for answering a lot
of questions about FPGA synthesis. Thanks to John Ott and Dennis Bro-
phy for making the ModelSim and Leonardo Spectrum software available
during the writing and for the software on the CD. Thanks to Derek
Palmer and Robert Blake of Altera for making the MaxPlus II software
available and answering questions. Finally thanks to Endric Schubert,
Mark Beardslee, Gernot Koch, Olaf Poeppe, Matt Hall, Michael Eitel-
wein, Ewald Detjens, and William Vancleemput for all of their hard work
with Bridges2Silicon.

CHAPTER

Introduction to
VHDL

The VHSIC Hardware Description Language is an industry
standard language used to describe hardware from the
abstract to the concrete level. VHDL resulted from work
done in the ’70s and early ’80s by the U.S. Department
of Defense. Its roots are in the ADA language, as will be
seen by the overall structure of VHDL as well as other
VHDL statements.

VHDL usage has risen rapidly since its inception and
is used by literally tens of thousands of engineers around
the globe to create sophisticated electronic products. This
chapter will start the process of easing the reader into
the complexities of VHDL. VHDL is a powerful language
with numerous language constructs that are capable of
describing very complex behavior. Learning all the features
of VHDL is not a simple task. Complex features will be
introduced in a simple form and then more complex usage
will be described.

Chapter One

In 1986, VHDL was proposed as an IEEE standard. It went through a
number of revisions and changes until it was adopted as the IEEE 1076
standard in December 1987. The IEEE 1076-1987 standard VHDL is the
VHDL used in this book. (Appendix D contains a brief description of VHDL
1076-1993.) All the examples have been described in IEEE 1076 VHDL, and
compiled and simulated with the VHDL simulation environment from
Model Technology Inc. The synthesis examples were synthesized with the
Exemplar Logic Inc. synthesis tools.

VHDL Terms

Before we go any further, let’s define some of the terms that we use
throughout the book. These are the basic VHDL building blocks that are
used in almost every description, along with some terms that are redefined
in VHDL to mean something different to the average designer.

Entity. All designs are expressed in terms of entities. An entity is
the most basic building block in a design. The uppermost level of
the design is the top-level entity. If the design is hierarchical, then
the top-level description will have lower-level descriptions contained
in it. These lower-level descriptions will be lower-level entities
contained in the top-level entity description.

Architecture. All entities that can be simulated have an architec-
ture description. The architecture describes the behavior of the
entity. A single entity can have multiple architectures. One archi-
tecture might be behavioral while another might be a structural
description of the design.

Configuration. A configuration statement is used to bind a
component instance to an entity-architecture pair. A configuration
can be considered like a parts list for a design. It describes which
behavior to use for each entity, much like a parts list describes
which part to use for each part in the design.

Package. A package is a collection of commonly used data types
and subprograms used in a design. Think of a package as a tool-
box that contains tools used to build designs.

Driver. This is a source on a signal. If a signal is driven by two
sources, then when both sources are active, the signal will have
two drivers.

Introduction to VHDL 3

Bus. The term “bus” usually brings to mind a group of signals or
a particular method of communication used in the design of hard-
ware. In VHDL, a bus is a special kind of signal that may have its
drivers turned off.

Attribute. An attribute is data that are attached to VHDL objects
or predefined data about VHDL objects. Examples are the current
drive capability of a buffer or the maximum operating temperature
of the device.

Generic. A generic is VHDL’s term for a parameter that passes
information to an entity. For instance, if an entity is a gate level
model with a rise and a fall delay, values for the rise and fall delays
could be passed into the entity with generics.

Process. A process is the basic unit of execution in VHDL. All
operations that are performed in a simulation of a VHDL descrip-
tion are broken into single or multiple processes.

Describing Hardware in VHDL

VHDL Descriptions consist of primary design units and secondary design
units. The primary design units are the Entity and the Package. The sec-
ondary design units are the Architecture and the Package Body. Sec-
ondary design units are always related to a primary design unit. Libraries
are collections of primary and secondary design units. A typical design
usually contains one or more libraries of design units.

Entity

A VHDL entity specifies the name of the entity, the ports of the entity,
and entity-related information. All designs are created using one or more
entities.

Let’s take a look at a simple entity example:

ENTITY mux IS
PORT (a, b, ¢, 4 : IN BIT;
s0, sl : IN BIT;
X, : OUT BIT);
END mux;

Chapter One

The keyword ENTITY signifies that this is the start of an entity state-
ment. In the descriptions shown throughout the book, keywords of the
language and types provided with the STANDARD package are shown in
ALL CAPITAL letters. For instance, in the preceding example, the key-
words are ENTITY, IS, PORT, IN, INOUT, and so on. The standard type pro-
vided is BIT. Names of user-created objects such as mux, in the example
above, will be shown in lower case.

The name of the entity is mux. The entity has seven ports in the PORT
clause. Six ports are of mode IN and one port is of mode out. The four data
input ports (a, b, ¢, d) are of type BIT. The two multiplexer select inputs,
s0 and s1, are also of type BIT. The output port is of type BIT.

The entity describes the interface to the outside world. It specifies
the number of ports, the direction of the ports, and the type of the ports.
A lot more information can be put into the entity than is shown here,

but this gives us a foundation upon which we can build more complex
examples.

Architectures

The entity describes the interface to the VHDL model. The architec-
ture describes the underlying functionality of the entity and contains
the statements that model the behavior of the entity. An architecture is
always related to an entity and describes the behavior of that entity. An
architecture for the counter device described earlier would look like this:

ARCHITECTURE dataflow OF mux IS
SIGNAL select : INTEGER;

BEGIN
select <= 0 WHEN s0 = ‘0’ AND sl = ‘0’ ELSE
1l WHEN s0 = ‘1’ AND sl = ‘0’ ELSE
2 WHEN s0 = ‘0’ AND sl = ‘1’ ELSE
3;
X <= a AFTER 0.5 NS WHEN select = 0 ELSE
b AFTER 0.5 NS WHEN select = 1 ELSE
c AFTER 0.5 NS WHEN select = 2 ELSE
d AFTER 0.5 NS;

END dataflow;

The keyword ARCHITECTURE signifies that this statement describes an
architecture for an entity. The architecture name is dataflow. The entity
the architecture is describing is called mux.

Introduction to VHDL 5

The reason for the connection between the architecture and the entity
is that an entity can have multiple architectures describing the behavior of
the entity. For instance, one architecture could be a behavioral description,
and another could be a structural description.

The textual area between the keyword ARCHITECTURE and the keyword
BEGIN is where local signals and components are declared for later use.
In this example signal select is declared to be a local signal.

The statement area of the architecture starts with the keyword BEGIN.
All statements between the BEGIN and the END netlist statement are called
concurrent statements, because all the statements execute concurrently.

Concurrent Signal Assignment

In a typical programming language such as C or C++, each assignment
statement executes one after the other and in a specified order. The order
of execution is determined by the order of the statements in the source file.
Inside a VHDL architecture, there is no specified ordering of the assignment
statements. The order of execution is solely specified by events occurring
on signals that the assignment statements are sensitive to.

Examine the first assignment statement from architecture behave, as
shown here:

select <= 0 WHEN s0 = ‘0’ AND sl = ‘0’ ELSE

1 WHEN sO ‘1’ AND sl = ‘0’ ELSE
2 WHEN s0 ‘0’ AND sl = ‘1’ ELSE
3;

A signal assignment is identified by the symbol <=. Signal select will
get a numeric value assigned to it based on the values of s0 and s1. This
statement is executed whenever either signal s0 or signal s1 has an event
occur on it. An event on a signal is a change in the value of that signal. A
signal assignment statement is said to be sensitive to changes on any sig-
nals that are to the right of the <= symbol. This signal assignment state-
ment is sensitive to s0 and s1. The other signal assignment statement in
architecture dataflow is sensitive to signal select.

Let’s take a look at how these statements actually work. Suppose that
we have a steady-state condition where both s0 and s1 have a value of 0,
and signals a, b, ¢, and d currently have a value of 0. Signal x will
have a 0 value because it is assigned the value of signal a whenever signals
s0 and s1 are both 0. Now assume that we cause an event on signal a that
changes its value to 1. When this happens, the first signal assignment

Chapter One

statement will not execute because this statement is not sensitive to
changes to signal a. This happens because signal a is not on the right
side of the operator. The second signal assignment statement will exe-
cute because it is sensitive to events on signal a. When the second signal
assignment statement executes the new value of a will be assigned to
signal x. Output port x will now change to 1.

Let’s now look at the case where signal so changes value. Assume that
s0 and s1 are both 0, and ports a, b, ¢, and d have the values 0, 1, 0,
and 1, respectively. Now let’s change the value of port so from 0 to 1. The
first signal assignment statement is sensitive to signal so and will there-
fore execute. When concurrent statements execute, the expression value
calculation will use the current values for all signals contained in it.

When the first statement executes, it computes the new value to be as-
signed to q from the current value of the signal expression on the right
side of the <= symbol. The expression value calculation uses the current
values for all signals contained in it.

With the value of s0 equal to 1 and s1 equal to 0, signal select will
receive a new value of 1. This new value of signal select will cause an
event to occur on signal select, causing the second signal assignment
statement to execute. This statement will use the new value of signal select
to assign the value of port b to port x. The new assignment will cause
port x to change from a 0 to a 1.

Event Scheduling

The assignment to signal x does not happen instantly. Each of the values
assigned to signal x contain an AFTER clause. The mechanism for delaying
the new value is called scheduling an event. By assigning port x a new
value, an event was scheduled 0.5 nanoseconds in the future that contains
the new value for signal x. When the event matures (0.5 nanoseconds in
the future), signal x receives the new value.

Statement Concurrency

The first assignment is the only statement to execute when events occur
on ports s0 or s1. The second signal assignment statement does not exe-
cute unless an event on signal select occurs or an event occurs on ports
a, b, c, d

Introduction to VHDL 7

The two signal assignment statements in architecture behave form a
behavioral model, or architecture, for the mux entity. The dataflow archi-
tecture contains no structure. There are no components instantiated in
the architecture. There is no further hierarchy, and this architecture can
be considered a leaf node in the hierarchy of the design.

Structural Designs

Another way to write the mux design is to instantiate subcomponents that
perform smaller operations of the complete model. With a model as simple
as the 4-input multiplexer that we have been using, a simple gate level
description can be generated to show how components are described and
instantiated. The architecture shown below is a structural description of
the mux entity.

ARCHITECTURE netlist OF mux IS
COMPONENT andgate
PORT(a, b, ¢ : IN bit; ¢ : OUT BIT);
END COMPONENT;
COMPONENT inverter
PORT (inl : IN BIT; x : OUT BIT);
END COMPONENT;
COMPONENT orgate
PORT(a, b, ¢, 4 : IN bit; x : OUT BIT);
END COMPONENT;

SIGNAL s0_inv, sl inv, x1, x2, x3, x4 : BIT;

BEGIN
Ul : inverter(s0, sO0 inv);
U2 : inverter(sl, sl inv);
U3 : andgate(a, s0_inv, sl inv, x1);
U4 : andgate(b, s0, sl inv, x2);
U5 : andgate(c, s0 inv, sl, x3);
U6 : andgate(d, s0, sl, x4);
U7 : orgate(x2 => b, x1 => a, x4 =>d, x3 => ¢, X => X);

END netlist;

This description uses a number of lower-level components to model the
behavior of the mux device. There is an inverter component, an andgate
component and an orgate component. Each of these components is declared
in the architecture declaration section, which is between the architecture
statement and the BEGIN keyword.

A number of local signals are used to connect each of the components
to form the architecture description. These local signals are declared using
the SIGNAL declaration.

Chapter One

The architecture statement area is located after the BEcIN keyword. In
this example are a number of component instantiation statements. These
statements are labeled U1-U7. Statement U1 is a component instantiation
statement that instantiates the inverter component. This statement con-
nects port s0 to the first port of the inverter component and signal
s0_inv to the second port of the inverter component. The effect is that
port inl of the inverter is connected to port s0 of the mux entity, and port
x of the inverter is connected to local signal s0 inv. In this statement
the ports are connected by the order they appear in the statement.

Notice component instantiation statement U7. This statement uses the
following notation:

U7 : orgate(x2 => b, x1 => a, x4 =>d, x3 => ¢, X => X);

This statement uses named association to match the ports and signals
to each other. For instance port x2 of the orgate is connected to port b of
the entity with the first association clause. The last instantiation clause
connects port x of the orgate component to port x of the entity. The order
of the clauses is not important. Named and ordered association can be
mixed, but it is not recommended.

Sequential Behavior

There is yet another way to describe the functionality of a mux device in
VHDL. The fact that VHDL has so many possible representations for sim-
ilar functionality is what makes learning the entire language a big task.
The third way to describe the functionality of the mux is to use a process
statement to describe the functionality in an algorithmic representation.
This is shown in architecture sequential, as shown in the following:

ARCHITECTURE sequential OF mux IS
(a, b, ¢, 4, s0, s1)
VARIABLE sel : INTEGER;
BEGIN
IF s0 = ‘0’ and sl = ‘0’ THEN
sel := 0;
ELSIF s0

= ‘1’ and sl = ‘0’ THEN
sel := 1;
2

ELSIF sO0
sel :=
ELSE
sel := 3;
END IF;
CASE sel IS

‘0’ and sl ‘0’ THEN

Introduction to VHDL 9

WHEN 0 =>
X <= a;
WHEN 1 =>
X <= b;
WHEN 2 =>
X <= C;
WHEN OTHERS =>
x <= d;
END CASE;
END PROCESS;
END sequential;

The architecture contains only one statement, called a process state-
ment. It starts at the line beginning with the keyword ProcEss and ends
with the line that contains END PRocESsS. All the statements between
these two lines are considered part of the process statement.

Process Statements

The process statement consists of a number of parts. The first part is
called the sensitivity list; the second part is called the process declarative
part; and the third is the statement part. In the preceding example, the
list of signals in parentheses after the keyword ProcEss is called the sen-
sitivity list. This list enumerates exactly which signals cause the process
statement to be executed. In this example, the list consists of a, b, ¢, 4,
s0, and si1. Only events on these signals cause the process statement to
be executed.

Process Declarative Region

The process declarative part consists of the area between the end of the
sensitivity list and the keyword BEGIN. In this example, the declarative
part contains a variable declaration that declares local variable sel. This
variable is used locally to contain the value computed based on ports s0
and s1.

Process Statement Part

The statement part of the process starts at the keyword BEcIN and ends
at the END PRoCESS line. All the statements enclosed by the process are

10

Chapter One

sequential statements. This means that any statements enclosed by the
process are executed one after the other in a sequential order just like a
typical programming language. Remember that the order of the statements
in the architecture did not make any difference; however, this is not true
inside the process. The order of execution is the order of the statements
in the process statement.

Process Execution

Let’s see how this works by walking through the execution of the example
in architecture sequential, line by line. To be consistent, let’s assume
that so changes to 0. Because s0 is in the sensitivity list for the process
statement, the process is invoked. Each statement in the process is then
executed sequentially. In this example the IF statement is executed first
followed by the cask statment. Each check that the IF statement performs
is done sequentially starting with the first in the model.

The first check is to see if s0 is equal to a 0. This statement fails because
s0 is equal to a 1 and sit is equal to a 0. The signal assignment state-
ment that follows the first check will not be executed. Instead, the next
check is performed. This check succeeds and the signal assignment state-
ments following the check for so0 = 1 and s1 = 0 are executed. This
statement is shown below.

Sequential Statements

This statement will execute sequentially. Once it is executed, the next
check of the 1F statement is not performed. Whenever a check succeeds,
no other checks are done. The 1IF statement has completed and now the case
statement will execute. The cask statement will evaluate the value of sel
computed earlier by the 1F statement and then execute the appropriate
statement that matches the value of sel. In this example the value of sel
is 1 therefore the following statement will be executed:

X <= b;

The value of port b will be assigned to port x and process execution will
terminate because there are no more statements in the architecture.

Introduction to VHDL 11

Architecture Selection

So far, three architectures have been described for one entity. Which archi-
tecture should be used to model the mux device? It depends on the accuracy
wanted and if structural information is required. If the model is going to
be used to drive a layout tool, then the structural architecture netlist is
probably most appropriate. If a structural model is not wanted for some
other reason, then a more efficient model can be used. Either of the other
two methods (architectures dataflow and sequential) are probably more
efficient in memory space required and speed of execution. How to choose
between these two methods may come down to a question of programming
style. Would the modeler rather write concurrent or sequential VHDL code?
If the modeler wants to write concurrent VHDL code, then the style of
architecture dataflowis the way to go; otherwise, architecture sequential
should be chosen. Typically, modelers are more familiar with sequen-
tial coding styles, but concurrent statements are very powerful tools for
writing small efficient models.

We will also look at yet another architecture that can be written for an
entity. This is the architecture that can be used to drive a synthesis tool.
Synthesis tools convert a Register Transfer Level (RTL) VHDL description
into an optimized gate-level description. Synthesis tools can offer greatly
enhanced productivity compared to manual methods. The synthesis
process is discussed in Chapters 9, “Synthesis” and 10, “VHDL Synthesis.”

Configuration Statements

An entity can have more than one architecture, but how does the modeler
choose which architecture to use in a given simulation? The configuration
statement maps component instantiations to entities. With this powerful
statement, the modeler can pick and choose which architectures are used
to model an entity at every level in the design.

Let’s look at a configuration statement using the netlist architecture of
the rs£f entity. The following is an example configuration:

CONFIGURATION muxconl OF mux IS
FOR netlist

FOR Ul,U2
inverter USE ENTITY WORK.myinv(versionl) ;
END FOR;
FOR U3,U4,U5,U6 : andgate USE ENTITY WORK.myand (ver-
sionl) ;

END FOR;

12

Chapter One

FOR U7 : orgate USE ENTITY WORK.myor (versionl) ;
END FOR;
END FOR;
END muxconl;

The function of the configuration statement is to spell out exactly
which architecture to use for every component instance in the model. This
occurs in a hierarchical fashion. The highest-level entity in the design
needs to have the architecture to use specified, as well as any components
instantiated in the design.

The preceding configuration statement reads as follows: This is a con-
figuration named muxcon1 for entity mux. Use architecture netlist as the
architecture for the topmost entity, which is mux. For the two component
instances Ul and U2 of type inverter instantiated in the netlist archi-
tecture, use entity myinv, architecture versioni from the library called
woRrK. For the component instances u3-ué of type andgate, use entity
myand, architecture versionl from library work. For component instance
U7 of type orgate use entity myor, architecture versionl from library
worK. All of the entities now have architectures specified for them. Entity
mux has architecture netlist, and the other components have architectures
named versionl specified.

Power of Configurations

By compiling the entities, architectures, and the configuration specified
earlier, you can create a simulatable model. But what if you did not want
to simulate at the gate level? What if you really wanted to use architecture
BEHAVE instead? The power of the configuration is that you do not need to
recompile your complete design; you only need to recompile the new config-
uration. Following is an example configuration:

CONFIGURATION muxcon2 OF mux IS
FOR dataflow
END FOR;
END muxcon2;

This is a configuration named muxcon2 for entity mux. Use architecture
dataflow for the topmost entity, which is mux. By compiling this
configuration, the architecture dataflow is selected for entity mux in this
simulation.

This configuration is not necessary in standard VHDL, but gives the
designer the freedom to specify exactly which architecture will be used for
the entity. The default architecture used for the entity is the last one
compiled into the working library.

Introduction to VHDL 13

SUMMARY

In this chapter, we have had a basic introduction to VHDL and how
it can be used to model the behavior of devices and designs. The first
example showed how a simple dataflow model in VDHL is specified. The
second example showed how a larger design can be made of smaller designs
—in this case a 4-input multiplexer was modeled using anD, orR and IN-
VERTER gates. The first example provided a structural view of VHDL.

The last example showed an algorithmic or behavioral view of the
mux. All these views of the mux successfully model the functionality of a mux
and all can be simulated with a VHDL simulator. Ultimately, however, a
designer will want to use the model to facilitate building a piece of hard-
ware. The most common use of VHDL in actually building hardware today
is through synthesis tools. Therefore, the focus of the rest of the book is
not only on the simulation of VHDL but also on the synthesis of VHDL.

This page intentionally left blank.

CHAPTER

Behavioral
Modeling

In Chapter 1, we discussed different modeling techniques
and touched briefly on behavioral modeling. In this chapter,
we discuss behavioral modeling more thoroughly, as well
as some of the issues relating to the simulation and syn-
thesis of VHDL models.

16

Chapter Two

Introduction to Behavioral
Modeling

The signal assignment statement is the most basic form of behavioral
modeling in VHDL. Following is an example:

a <= b;

This statement is read as follows: a gets the value of b. The effect of
this statement is that the current value of signal b is assigned to signal
a. This statement is executed whenever signal b changes value. Signal b
is in the sensitivity list of this statement. Whenever a signal in the sen-
sitivity list of a signal assignment statement changes value, the signal
assignment statement is executed. If the result of the execution is a new
value that is different from the current value of the signal, then an event
is scheduled for the target signal. If the result of the execution is the same
value, then no event is scheduled but a transaction is still generated
(transactions are discussed in Chapter 3, “Sequential Processing”). A trans-
action is always generated when a model is evaluated, but only signal
value changes cause events to be scheduled.

The next example shows how to introduce a nonzero delay value for the
assignment;:

a <= b after 10 ns;

This statement is read as follows: a gets the value of b when 10
nanoseconds of time have elapsed.

Both of the preceding statements are concurrent signal assignment state-
ments. Both statements are sensitive to changes in the value of signal b.
Whenever b changes value, these statements execute and new values are
assigned to signal a.

Using a concurrent signal assignment statement, a simple AND gate
can be modeled, as follows:

ENTITY and2 IS
PORT (a, b : IN BIT;
c : OUT BIT);
END and2;

ARCHITECTURE and2 behav OF and2 IS
BEGIN
c <= a AND b AFTER 5 ns;

Behavioral Modeling 17

Figure 2-1
AND Gate Symbol.

>

=

END and2_behav;

The AND gate has two inputs a, b and one output ¢, as shown in Figure
2-1. The value of signal ¢ may be assigned a new value whenever either
a or b changes value. With an AND gate, if a is a *0’ and b changes from a
‘1’ toa ‘0, output c does not change. If the output does change value, then
a transaction occurs which causes an event to be scheduled on signal c;
otherwise, a transaction occurs on signal c.

The entity design unit describes the ports of the and2 gate. There are
two inputs a and b, as well as one output c. The architecture and2 behav
for entity and2 contains one concurrent signal assignment statement. This
statement is sensitive to both signal a and signal b by the fact that the
expression to calculate the value of ¢ includes both a and b signal values.

The value of the expression a and b is calculated first, and the resulting
value from the calculation is scheduled on output ¢, 5 nanoseconds from
the time the calculation is completed.

The next example shows more complicated signal assignment state-
ments and demonstrates the concept of concurrency in greater detail. In
Figure 2-2, the symbol for a four-input multiplexer is shown.

This is the behavioral model for the mux:

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;

ENTITY mux4 IS

PORT (io0, il, i2, i3, a, b : IN std logic;
g : OUT std logic);

END mux4;

ARCHITECTURE mux4 OF mux4 IS
SIGNAL sel: INTEGER;
BEGIN
WITH sel SELECT
g <= 10 AFTER 10 ns WHEN O,
il AFTER 10 ns WHEN 1,

18

Figure 2-2
Mux4 Symbol.

Chapter Two
MUX4
— 10
—1n
— QI
— 13
A B

i2 AFTER 10 ns WHEN 2,
i3 AFTER 10 ns WHEN 3,
‘X’ AFTER 10 ns WHEN OTHERS;

sel <=0 WHEN a = ‘0’ AND b = ‘0’ ELSE
1 WHEN a = ‘1’ AND b = ‘0’ ELSE
2 WHEN a = ‘0’ AND b = ‘1’ ELSE
3 WHEN a = ‘1’ AND b = ‘1’ ELSE
4 ;

END mux4;

The entity for this model has six input ports and one output port. Four
of the input ports (10, 11, 12, 13) represent signals that will be assigned
to the output signal q. Only one of the signals will be assigned to the out-
put signal q based on the value of the other two input signals a and b. The
truth table for the multiplexer is shown in Figure 2-3.

To implement the functionality described in the preceding, we use a
conditional signal assignment statement and a selected signal assignment.

The second statement type in this example is called a conditional signal
assignment statement. This statement assigns a value to the target sig-
nal based on conditions that are evaluated for each statement. The
statement wHEN conditions are executed one at a time in sequential order
until the conditions of a statement are met. The first statement that
matches the conditions required assigns the value to the target signal.
The target signal for this example is the local signal sel. Depending
on the values of signals a and b, the values 0 through 4 are assigned
to sel.

If more than one statement’s conditions match, the first statement that

Behavioral Modeling 19

Figure 2-3
Mux Functional
Table.

A B Q
[

0 0 10

1 0 Il

0 1 12

1 1 13

matches does the assign, and the other matching statements’ values are
ignored.

The first statement is called a selected signal assignment and selects
among a number of options to assign the correct value to the target sig-
nal. The target signal in this example is the signal q.

The expression (the value of signal sel in this example) is evaluated,
and the statement that matches the value of the expression assigns the
value to the target signal. All of the possible values of the expression must
have a matching choice in the selected signal assignment (or an OTHERS
clause must exist).

Each of the input signals can be assigned to output q, depending on the
values of the two select inputs, a and b. If the values of a or b are unknown
values, then the last value, X’ (unknown), is assigned to output q. In this
example, when one of the select inputs is at an unknown value, the out-
put is set to unknown.

Looking at the model for the multiplexer, it looks like the model will
not work as written. It seems that the value of signal sel is used before
it is computed. This impression is received from the fact that the second
statement in the architecture is the statement that actually computes the
value for sel. The model does work as written, however, because of the
concept of concurrency.

The second statement is sensitive to signals a and b. Whenever either
a or b changes value, the second statement is executed, and signal sel is
updated. The first statement is sensitive to signal sel. Whenever signal
sel changes value, the first signal assignment is executed.

If this example is processed by a synthesis tool, the resulting gate
structure created resembles a 4 to 1 multiplexer. If the synthesis library
contains a 4 to 1 multiplexer primitive, that primitive may be generated

20

Chapter Two

based on the sophistication of the synthesis tool and the constraints put
on the design.

Transport Versus Inertial Delay

In VHDL, there are two types of delay that can be used for modeling
behaviors. Inertial delay is the most commonly used, while transport delay
is used where a wire delay model is required.

Inertial Delay

Inertial delay is the default in VHDL. If no delay type is specified, iner-
tial delay is used. Inertial delay is the default because, in most cases, it
behaves similarly to the actual device.

In an inertial delay model, the output signal of the device has inertia,
which must be overcome for the signal to change value. The inertia value
is equal to the delay through the device. If there are any spikes, pulses,
and so on that have periods where a signal value is maintained for less
than the delay through the device, the output signal value does not
change. If a signal value is maintained at a particular value for longer
than the delay through the device, the inertia is overcome and the device
changes to the new state.

Figure 2-4 is an example of a very simple buffer symbol. The buffer has
a single input A and a single output B. The waveforms are shown for input
A and the output B. Signal A changes from a ‘0’ toa *1’ at 10 nanoseconds
and from a *1’ to a ‘0’ at 20 nanoseconds. This creates a pulse or spike
that is 10 nanoseconds in duration. The buffer has a 20- nanosecond delay
through the device.

The 0’ to ‘1’ transition on signal A causes the buffer model to be exe-
cuted and schedules an event with the value ‘1 to occur on output B at
time 30 nanoseconds. At time 20 nanoseconds, the next event on signal A
occurs. This executes the buffer model again. The buffer model predicts a
new event on output B of a 0 value at time 40 nanoseconds. The event
scheduled on output B for time 30 nanoseconds still has not occurred. The
new event predicted by the buffer model clashes with the currently
scheduled event, and the simulator preempts the event at 30 nanoseconds.

The effect of the preemption is that the spike is swallowed. The reason
for the cancellation is that, according to the inertial delay model, the first

Behavioral Modeling 21

A B
Figure 2-4
Inertial Delay Buffer
Waveforms.
Delay = 20 ns
A
B
| | | | |
| | | | |
0 10 20 30 40

event at 30 nanoseconds did not have enough time to overcome the inertia
of the output signal.

The inertial delay model is by far the most commonly used in all cur-
rently available simulators. This is partly because, in most cases, the
inertial delay model is accurate enough for the designer’s needs. One
more reason for the widespread use of inertial delay is that it prevents
prolific propagation of spikes throughout the circuit. In most cases, this
is the behavior wanted by the designer.

Transport Delay

Transport delay is not the default in VHDL and must be specified. It repre-
sents a wire delay in which any pulse, no matter how small, is propagated
to the output signal delayed by the delay value specified. Transport delay
is especially useful for modeling delay line devices, wire delays on a PC
board, and path delays on an ASIC.

If we look at the same buffer circuit that was shown in Figure 2-4, but
replace the inertial delay waveforms with the transport delay waveforms,
we get the result shown in Figure 2-5. The same waveform is input to
signal A, but the output from signal B is quite different. With transport
delay, the spikes are not swallowed, but the events are ordered before

22 Chapter Two

A B
Figure 2-5
Transport Delay
Buffer Waveforms.
Delay = 20 ns
A
B
| | | |
| | | |
0 10 20 30 40
propagation.

At time 10 nanoseconds, the buffer model is executed and schedules an
event for the output to go to a 1 value at 30 nanoseconds. At time 20
nanoseconds, the buffer model is re-invoked and predicts a new value for
the output at time 40 nanoseconds. With the transport delay algorithm,
the events are put in order. The event for time 40 nanoseconds is put in
the list of events after the event for time 30 nanoseconds. The spike is not
swallowed but is propagated intact after the delay time of the device.

Inertial Delay Model

The following model shows how to write an inertial delay model. It is
the same as any other model we have been looking at. The default delay
type is inertial; therefore, it is not necessary to specify the delay type to
be inertial:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY buf IS
PORT (a : IN std logic;

b : OUT std logic);
END buf;

Behavioral Modeling 23

ARCHITECTURE buf OF buf IS
BEGIN

b <= a AFTER 20 ns;
END buf;

Transport Delay Model

Following is an example of a transport delay model. It is similar in every
respect to the inertial delay model except for the keyword TRANSPORT in
the signal assignment statement to signal b. When this keyword exists,
the delay type used in the statement is the transport delay mechanism:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY delay line IS
PORT (a : IN std logic;

b : OUT std logic);
END delay line;

ARCHITECTURE delay line OF delay line IS
BEGIN

b <= TRANSPORT a AFTER 20 ns;
END delay line;

Simulation Deltas

Simulation deltas are used to order some types of events during a simu-
lation. Specifically, zero delay events must be ordered to produce con-
sistent results. If zero delay events are not properly ordered, results can
be disparate between different simulation runs. An example of this is
shown using the circuit shown in Figure 2-6. This circuit could be part of
a clocking scheme in a complex device being modeled. It probably would
not be the entire circuit, but only a part of the circuit used to generate
the clock to the D flip-flop.

The circuit consists of an inverter, a NAND gate, and an AND gate
driving the clock input of a flip-flop component. The NAND gate and AND
gate are used to gate the clock input to the flip-flop.

Let’s examine the circuit operation, using a delta delay mechanism and
another mechanism. By examining the two delay mechanisms, we will
better understand how a delta delay orders events.

24

Figure 2-6
Simulation Delta
Circuit.

Chapter Two

Clock

DFF

CLK QB

To use delta delay, all of the circuit components must have zero delay
specified. The delay for all three gates is specified as zero. (Real circuits
do not exhibit such characteristics, but sometimes modeling is easier if
all of the delay is concentrated at the outputs.) Let’s examine the non-
delta delay mechanism first.

When a falling edge occurs on signal A, the output of the inverter
changes in 0 time. Let’s assume that such an event occurs at time 10
nanoseconds. The output of the inverter, signal B, changes to reflect the
new input value. When signal B changes, both the AND gate and the
NAND gate are reevaluated. For this example, the clock input is assumed
to be a constant value *1’. If the NAND gate is evaluated first, its new
value is ‘0-’.

When the AND gate evaluates, signal Bis a *0’, and signal Cisa *1’;
therefore, the AND gate predicts a new value of ‘0. But what happens
if the AND gate evaluates first? The AND gate sees a *1’ value on signal
B, and a 1’ value on signal C before the NAND gate has a chance to
reevaluate. The AND gate predicts a new value of *1-.

Behavioral Modeling 25

Figure 2-7
Comparison of Two
Evaluation Mecha-
nisms.

AND First NAND First
evaluate inverter evaluate inverter
B<=1 B<=1
evaluate AND (C = 1) evaluate NAND
D<=1 C<=0
evaluate NAND evaluate AND
C<=0 D<=0
evaluate AND
D<=0

The NAND gate reevaluates and calculates its new value as *0’. The
change on the output of the NAND gate causes the AND gate to reevaluate
again. The AND gate now sees the value of B, a ‘1’ value, and the new
value of signal C, a ‘0’ value. The AND gate now predicts a *0’ on its
output. This process is summarized in Figure 2-7.

Both circuits arrive at the same value for signal D. However, when the
AND gate is evaluated first, a rising edge, one delta delay wide, occurs on
signal D. This rising edge can clock the flip-flop, depending on how the
flip-flop is modeled.

The point of this discussion is that without a delta synchronization
mechanism, the results of the simulation can depend on how the simulator
data structures are built. For instance, compiling the circuit the first time
might make the AND gate evaluate first, while compiling again might
make the NAND gate evaluate first—clearly not desirable results; simu-
lation deltas prevent this behavior from occurring.

The same circuit evaluated using the VHDL delta delay mechanism
would evaluate as shown in Figure 2-8.

The evaluation of the circuit does not depend on the order of evalua-
tion of the NAND gate or AND gate. The sequence in Figure 2-8 occurs
irrespective of the evaluation order of the AND or NAND gate.

During the first delta time point of time 10 nanoseconds, signal A receives
the value ‘0. This causes the inverter to reevaluate with the new value.

26

Figure 2-8
Delta Delay Evalua-
tion Mechanism.

Chapter Two

Time

Delta

Activity

10 ns

(D

A<=0

evaluate inverter

(2) B<«=1
evaluate AND
evaluate NAND

(3) D<=1
C<=0
evaluate AND

4) D<=0

11 ns

The inverter calculates the new value for signal B, which is the value *1-.
This value is not propagated immediately, but is scheduled for the next
delta time point (delta 2).

The simulator then begins execution of delta time point 2. Signal B is
updated to a *1’ value, and the AND gate and NAND gate are reevaluated.
Both the AND gate and NAND gate now schedule their new values for
the next delta time point (delta 3).

When delta 3 occurs, signal D receives a ‘1 value, and signal C receives
a ‘0’ value. Because signal C also drives the AND gate, the AND gate is
reevaluated and schedules its new output for delta time point 4.

To summarize, simulation deltas are an infinitesimal amount of time
used as a synchronization mechanism when 0 delay events are present.
Delta delay is used whenever 0 delay is specified, as shown in the fol-
lowing:

a <= b AFTER 0 ns;

Another case for using delta delay is when no delay is specified. For
example:

a <= b;

In both cases, whenever signal b changes value from an event, signal
a has a delta-delayed signal assignment to it.

An equivalent VHDL model of the circuit shown in Figure 2-6, except
for the flip-flop, is shown in the following:

Behavioral Modeling 27

ENTITY reg IS
PORT(a, clock : in bit
d : out bit);
END reg;

ARCHITECTURE test OF reg IS
SIGNAL b, c¢ : bit;

BEGIN

b <= NOT(a); -- notice no delay
¢ <= NOT(clock AND Db);

d <= ¢ AND b;

END test;

Drivers

VHDL has a unique way of handling multiply driven signals. Multiply
driven signals are very useful for modeling a data bus, a bidirectional bus,
and so on. Correctly modeling these kinds of circuits in VHDL requires
the concept of signal drivers. A VHDL driver is one contributor to the
overall value of a signal.

A multiply driven signal has many drivers. The values of all of the
drivers are resolved together to create a single value for the signal.
The method of resolving all of the contributors into a single value is
through a resolution function (resolution functions are discussed in Chapter
5, “Subprograms and Packages”). A resolution function is a designer-
written function that is called whenever a driver of a signal changes value.

Driver Creation

Drivers are created by signal assignment statements. A concurrent signal
assignment inside of an architecture produces one driver for each sig-
nal assignment. Therefore, multiple signal assignments produce multiple
drivers for a signal. Consider the following architecture:

ARCHITECTURE test OF test IS
BEGIN

a <= b AFTER 10 ns;

a <= ¢ AFTER 10 ns;
END test;

Signal a is being driven from two sources, b and c. Each concurrent

28

Chapter Two

signal assignment statement creates a driver for signal a. The first state-
ment creates a driver that contains the value of signal b delayed by 10
nanoseconds. The second statement creates a driver that contains the
value of signal ¢ delayed by 10 nanoseconds. How these two drivers are
resolved is left to the designer. The designers of VHDL did not want to
arbitrarily add language constraints to signal behavior. Synthesizing the
preceding example would short ¢ and b together.

Bad Multiple Driver Model

Let’s look at a model that looks correct at first glance, but does not function
as the user intended. The model is for the 4 to 1 multiplexer discussed
earlier:

USE WORK.std logic 1164.ALL;

ENTITY mux IS

PORT (io0, il, i2, i3, a, b: IN std logic;
g : OUT std logic);

END mux;

ARCHITECTURE bad OF mux IS
BEGIN

q <= i0 WHEN a = ‘0’ AND b = ‘0’ ELSE ‘0’;
g <= il WHEN a = ‘1’ AND b = ‘0’ ELSE ‘0’;
g <= i2 WHEN a = ‘0’ AND b = ‘1’ ELSE ‘0’;
q <= i3 WHEN a = ‘1’ AND b = ‘1’ ELSE ‘0’;

END BAD;

This model assigns i0 to g when a is equal to a 0 and b is equal to a 0;
il when a is equal to a 1 and b is equal to a 0; and so on. At first glance,
the model looks like it works. However, each assignment to signal q creates
a new driver for signal q. Four drivers to signal q are created by this model.

Each driver drives either the value of one of the io0, i1, i2, i3 inputs
or *0’. The value driven is dependent on inputs a and b. If a is equal to
‘0’ and b is equal to ‘07, the first assignment statement puts the value
of 10 into one of the drivers of q. The other three assignment statements
do not have their conditions met and, therefore, are driving the value *0-.
Three drivers are driving the value 07, and one driver is driving the value
of 10. Typical resolution functions would have a difficult time predicting
the desired output on q, which is the value of io.

A better way to write this model is to create only one driver for signal
q, as shown in the following:

Behavioral Modeling 29

ARCHITECTURE better OF mux IS

BEGIN
g <= i0 WHEN a = ‘0’ AND b = ‘0’ ELSE
il WHEN a = ‘1’ AND b = ‘0’ ELSE
i2 WHEN a = ‘0’ AND b = ‘1’ ELSE
i3 WHEN a = ‘1’ AND b = ‘1’ ELSE
‘X7, --- unknown

END better;

(Generics

Generics are a general mechanism used to pass information to an instance
of an entity. The information passed to the entity can be of most types
allowed in VHDL. (Types are covered in detail later in Chapter 4, “Data
Types.”)

Why would a designer want to pass information to an entity? The
most obvious, and probably most used, information passed to an entity is
delay times for rising and falling delays of the device being modeled.
Generics can also be used to pass any user-defined data types, including
information such as load capacitance, resistance, and so on. For synthesis
parameters such as datapath widths, signal widths, and so on, can be
passed in as generics.

All of the data passed to an entity is instance-specific information. The
data values pertain to the instance being passed the data. In this way, the
designer can pass different values to different instances in the design.

The data passed to an instance is static data. After the model has been
elaborated (linked into the simulator), the data does not change during
simulation. Generics cannot be assigned information as part of a simula-
tion run. The information contained in generics passed into a component
instance or a block can be used to alter the simulation results, but results
cannot modify the generics.

The following is an example of an entity for an AND gate that has three
generics associated with it:

ENTITY and2 IS
GENERIC(rise, fall : TIME; load : INTEGER);
PORT(a, b : IN BIT;
c : OUT BIT);
END AND2;

This entity allows the designer to pass in a value for the rise and fall

30 Chapter Two

delays, as well as the loading that the device has on its output. With this
information, the model can correctly model the AND gate in the design.
Following is the architecture for the AND gate:

ARCHITECTURE load dependent OF and2 IS
SIGNAL internal : BIT;
BEGIN
internal <= a AND b;
¢ <= internal AFTER (rise + (load * 2 ns)) WHEN internal = ‘1’
ELSE internal AFTER (fall + (load * 3 ns));

END load dependent;

The architecture declares a local signal called internal to store the
value of the expression a and b. Pre-computing values used in multiple
instances is a very efficient method for modeling.

The generics rise, fall, and load contain the values that were
passed in by the component instantiation statement. Let’s look at a
piece of a model that instantiates the components of type aNp2 in an-
other model:

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
ENTITY test IS
GENERIC(rise, fall : TIME; load : INTEGER);
PORT (ima, inb, inc, ind : IN std logic;
outl, out2 : OUT std logic);
END test;

ARCHITECTURE test arch OF test IS
COMPONENT AND2
GENERIC(rise, fall : TIME; load : INTEGER);
PORT (a, b : IN std logic;
¢ : OUT std logic);
END COMPONENT;
BEGIN
Ul: AND2 GENERIC MAP(10 ns, 12 ns, 3)
PORT MAP (ina, inb, outl);

U2: AND2 GENERIC MAP(9 ns, 11 ns, 5)
PORT MAP (inc, ind, out2);
END test arch;

The architecture statement first declares any components that will be
used in the model. In this example, component AND2 is declared. Next, the
body of the architecture statement contains two of the component instan-
tiation statements for components vl and u2. Port a of component U1l is
mapped to signal ina, port b is mapped to signal inb, and port c is mapped

Behavioral Modeling 31

to outl. In the same way, component v2 is mapped to signals inc, ind,
and out2.

Generic rise of instance vl is mapped to 10 nanoseconds, generic
fall is mapped to 12 nanoseconds, and generic load is mapped to 3. The
generics for component v2 are mapped to values 9 and 11 nanoseconds
and value 5.

Generics can also have default values that are overridden if actual
values are mapped to the generics. The next example shows two instances
of component type AND2.

In instance u1, actual values are mapped to the generics, and these
values are used in the simulation. In instance U2, no values are mapped
to the instance, and the default values are used to control the behavior of
the simulation if specified; otherwise an error occurs:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY test IS
GENERIC(rise, fall : TIME;
load : INTEGER) ;
PORT (ina, inb, inc, ind : IN std logic;
outl, out2 : OUT std logic);
END test;

ARCHITECTURE test arch OF test IS
COMPONENT and2
GENERIC (rise, fall : TIME :=
load : INTEGER := 0);
PORT (a, b : IN std logic;
¢ : OUT std logic);
END COMPONENT;
BEGIN

10 NS;

Ul: and2 GENERIC MAP(10 ns, 12 ns, 3)
PORT MAP (ina, inb, outl);

U2: and2 PORT MAP (inc, ind, out2);

END test arch;

As we have seen, generics have many uses. The uses of generics are
limited only by the creativity of the model writer.

Block Statements

Blocks are a partitioning mechanism within VHDL that allow the designer

32

Chapter Two

to logically group areas of the model. The analogy with a typical Schematic
Entry system is a schematic sheet. In a typical Schematic Entry system,
a level or a portion of the design can be represented by a number of
schematic sheets. The reason for partitioning the design may relate to
C design standards about how many components are allowed on a sheet,
or it may be a logical grouping that the designer finds more understandable.

The same analogy holds true for block statements. The statement area
in an architecture can be broken into a number of separate logical areas.
For instance, if you are designing a CPU, one block might be an ALU,
another a register bank, and another a shifter.

Each block represents a self-contained area of the model. Each block
can declare local signals, types, constants, and so on. Any object that can
be declared in the architecture declaration section can be declared in the
block declaration section. Following is an example:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
PACKAGE bit32 IS
TYPE tw32 IS ARRAY (31 DOWNTO 0) OF std logic;
END bit32;

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
USE WORK.bit32.ALL;
ENTITY cpu IS
PORT(clk, interrupt : IN std logic;
addr : OUT tw32; data : INOUT tw32);
END cpu;

ARCHITECTURE cpu_blk OF cpu IS
SIGNAL ibus, dbus : tw32;
BEGIN
ALU : BLOCK
SIGNAL gbus : tw32;
BEGIN
-- alu behavior statements
END BLOCK ALU;

REG8 : BLOCK
SIGNAL zbus : tw32;
BEGIN
REG1l: BLOCK
SIGNAL gbus : tw32;
BEGIN
-- regl behavioral statements
END BLOCK REG1;

-- more REG8 statements

Behavioral Modeling 33

END BLOCK REGS8;
END cpu blk;

Entity cpu is the outermost entity declaration of this model. (This is
not a complete model, only a subset.) Entity cpu declares four ports that
are used as the model interface. Ports c1k and interrupt are input ports,
addr is an output port, and data is an inout port. All of these ports are
visible to any block declared in an architecture for this entity. The input
ports can be read from and the output ports can be assigned values.

Signals ibus and dbus are local signals declared in architecture
cpu_blk. These signals are local to architecture cpu blk and cannot be
referenced outside of the architecture. However, any block inside of the
architecture can reference these signals. Any lower-level block can refer-
ence signals from a level above, but upper-level blocks cannot reference
lower-level local signals.

Signal gbus is declared in the block declaration section of block aLu.
This signal is local to block arLu and cannot be referenced outside of the
block. All of the statements inside of block ALU can reference gbus, but
statements outside of block ALU cannot use gbus.

In exactly the same fashion, signal zbus is local to block rREG8. Block
REG1 inside of block REG8 has access to signal zbus, and all of the other
statements in block REG8 also have access to signal zbus.

In the declaration section for block RE@1, another signal called qbus is
declared. This signal has the same name as the signal gbus declared in
block aru. Doesn’t this cause a problem? To the compiler, these two signals
are separate, and this is a legal, although confusing, use of the language.
The two signals are declared in two separate declarative regions and are
valid only in those regions; therefore, they are considered to be two sep-
arate signals with the same name. Each gbus can be referenced only in
the block that has the declaration of the signal, except as a fully qualified
name, discussed later in this section.

Another interesting case is shown here:

BLK1 : BLOCK
SIGNAL gbus : tw32;
BEGIN

BLK2 : BLOCK

SIGNAL gbus : tw32;
BEGIN

-- blk2 statements
END BLOCK BLK2;

-- blkl statements

34

Chapter Two

END BLOCK BLK1;

In this example, signal gbus is declared in two blocks. The interesting
feature of this model is that one of the blocks is contained in the other. It
would seem that BLk2 has access to two signals called gbus—the first from
the local declaration of gbus in the declaration section of BLK2 and the
second from the declaration section of BLk1. BLK1 is also the parent block
of BLk2. However, BLk2 sees only the gbus signal from the declaration in
BLK2. The gbus signal from BLk1 has been overridden by a declaration of the
same name in BLK2.

The gbus signal from BLK1 can be seen inside of BLk2, if the name of
signal gbus is qualified with the block name. For instance, in this example,
to reference signal gbus from BLK1, use BLK1.gbus.

In general, this can be a very confusing method of modeling. The
problem stems from the fact that you are never quite sure which gbus is
being referenced at a given time without fully analyzing all of the decla-
rations carefully.

As mentioned earlier, blocks are self-contained regions of the model.
But blocks are unique because a block can contain ports and generics.
This allows the designer to remap signals and generics external to the
block to signals and generics inside the block. But why, as designers,
would we want to do that?

The capability of ports and generics on blocks allows the designer to
reuse blocks written for another purpose in a new design. For instance,
let’s assume that you are upgrading a CPU design and need extra func-
tionality in the ALU section. Let’s also assume that another designer has
a new ALU model that performs the functionality needed. The only trou-
ble with the new ALU model is that the interface port names and generic
names are different than the names that exist in the design being upgraded.
With the port and generic mapping capability within blocks, this is no
problem. Map the signal names and the generic parameters in the design
being upgraded to ports and generics created for the new ALU block.
Following is an example illustrating this:

PACKAGE math IS
TYPE tw32 IS ARRAY (31 DOWNTO 0) OF std_logic;
FUNCTION tw add(a, b : tw32) RETURN tw32;
FUNCTION tw_sub(a, b : tw32) RETURN tw32;

END math;

Behavioral Modeling 35

USE WORK.math.ALL;

LIBRARY IEEE;

USE IEEE.std logic 1164 .ALL;

ENTITY cpu IS

PORT(clk, interrupt : IN std logic;
addr : OUT tw32; cont : IN INTEGER;
data : INOUT tw32);

END cpu;

ARCHITECTURE cpu_blk OF cpu IS
SIGNAL ibus, dbus : tw32;
BEGIN
ALU : BLOCK
PORT (abus, bbus : IN tw32;
d out : OUT tw32;
ctbus : IN INTEGER) ;
PORT MAP (abus => ibus, bbus => dbus, d out => data,
ctbus => cont);
SIGNAL gbus : tw32;
BEGIN
d out <= tw _add(abus, bbus) WHEN ctbus
tw_sub (abus, bbus) WHEN ctbus
abus;
END BLOCK ALU;
END cpu blk;

0 ELSE
1 ELSE

Basically, this is the same model shown earlier except for the port and
port map statements in the aLU block declaration section. The port state-
ment declares the number of ports used for the block, the direction of the
ports, and the type of the ports. The port map statement maps the new
ports with signals or ports that exist outside of the block. Port abus is
mapped to architecture cPu_BLK local signal ibus; port bbus is mapped to
dbus. Ports d out and ctbus are mapped to external ports of the entity.

Mapping implies a connection between the port and the external signal
such that, whenever there is a change in value on the signal connected to
a port, the port value changes to the new value. If a change occurs in the
signal ibus, the new value of ibus is passed into the ALU block and port
abus obtains the new value. The same is true for all ports.

Guarded Blocks

Block statements have another interesting behavior known as guarded
blocks. A guarded block contains a guard expression that can enable and
disable drivers inside the block. The guard expression is a boolean expres-
sion: when true, drivers contained in the block are enabled, and when
false, the drivers are disabled. Let’s look at the following example to show

36

Chapter Two

some more of the details:

LIBRARY IEEE;

USE IEEE.std _logic_1164.ALL;

ENTITY latch IS

PORT(d, clk : IN std logic;
dq, gb : OUT std logic);

END latch;

ARCHITECTURE latch_guard OF latch IS
BEGIN
Gl : BLOCK(clk = ‘1')
BEGIN
g <= GUARDED d AFTER 5 ns;
gb <= GUARDED NOT(d) AFTER 7 ns;
END BLOCK G1;
END latch guard;

This model illustrates how a latch model could be written using a
guarded block. This is a very simple-minded model; however, more complex
and more accurate models will be shown later. The entity declares the four
ports needed for the latch, and the architecture has only one statement in
it. The statement is a guarded block statement. A guarded block statement
looks like a typical block statement, except for the guard expression after
the keyword BLock. The guard expression in this example is (clk = *17).
This is a boolean expression that returns TRUE when c1k is equal toa *1-
value and FALSE when clk is equal to any other value.

When the guard expression is true, all of the drivers of guarded signal
assignment statements are enabled, or turned on. When the guard
expression is false, all of the drivers of guarded signal assignment state-
ments are disabled, or turned off. There are two guarded signal assignment
statements in this model: One is the statement that assigns a value to q
and the other is the statement that assigns a value to gb. A guarded signal
assignment statement is recognized by the keyword GuarRDED between the
<= and the expression part of the statement.

When port c1k of the entity has the value ‘17, the guard expression is
true, and the value of input 4 is scheduled on the g output after 5 nano-
seconds, and the NOT value of d is scheduled on the gb output after 7
nanoseconds. When port c1k has the value 0’ or any other legal value
of the type, outputs q and gb turn off and the output value of the signal
is determined by the default value assigned by the resolution function.
When c1k is not equal to ‘17, the drivers created by the signal assignments
for g and gb in this architecture are effectively turned off. The drivers do
not contribute to the overall value of the signal.

Signal assignments can be guarded by using the keyword GUaARDED. A

Behavioral Modeling 37

SUMMARY

new signal is implicitly declared in the block whenever a block has a guard
expression. This signal is called guarp. Its value is the value of the guard
expression. This signal can be used to trigger other processes to occur.

Blocks are useful for partitioning the design into smaller, more man-
ageable units. They allow the designer the flexibility to create large
designs from smaller building blocks and provide a convenient method of
controlling the drivers on a signal.

In the first chapter, concepts of structurally building models were discussed.
This chapter is the first of many that discusses behavioral modeling. In this
chapter, we discussed:

How signal assignments are the most basic form of behavioral
modeling

Signal assignment statements can be selected or conditional
Signal assignment statements can contain delays

VHDL contains inertial delay and transport delay

Simulation delta time points are used to order events in time
Drivers on a signal are created by signal assignment statements
Generics are used to pass data to entities

Block statements allow grouping within an entity

Guarded block statements allow the capability of turning off
drivers within a block

This page intentionally left blank.

CHAPTER

Sequential
Processing

In Chapter 2, we examined behavioral modeling using
concurrent statements. We discussed concurrent signal
assignment statements, as well as block statements and
component instantiation. In this chapter, we focus on
sequential statements. Sequential statements are state-
ments that execute serially one after the other. Most
programming languages, such as C and C++, support this
type of behavior. In fact, VHDL has borrowed the syntax
for its sequential statements from ADA.

40

Chapter Three

Process Statement

In an architecture for an entity, all statements are concurrent. So where
do sequential statements exist in VHDL? There is a statement called
the process statement that contains only sequential statements. The
process statement is itself a concurrent statement. A process statement
can exist in an architecture and define regions in the architecture
where all statements are sequential.

A process statement has a declaration section and a statement part. In
the declaration section, types, variables, constants, subprograms, and so on
can be declared. The statement part contains only sequential statements.
Sequential statements consist of CASE statements, IF THEN ELSE state-
ments, LOOP statements, and so on. We examine these statements later in
this chapter. First, let’s look at how a process statement is structured.

Sensitivity List

The process statement can have an explicit sensitivity list. This list defines
the signals that cause the statements inside the process statement to
execute whenever one or more elements of the list change value. The sen-
sitivity list is a list of the signals that will cause the process to execute.
The process has to have an explicit sensitivity list or, as we discuss later,
a WAIT statement.

As of this writing, synthesis tools have a difficult time with sensitivity
lists that are not fully specified. Synthesis tools think of process state-
ments as either describing sequential logic or combinational logic. If a
process contains a partial sensitivity list, one that does not contain every
input signal used in the process, there is no way to map that functionality
to either sequential or combinational logic.

Process Example

Let’s look at an example of a process statement in an architecture to see
how the process statement fits into the big picture, and discuss some more
details of how it works. Following is a model of a two-input NAND gate:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY nand2 IS

Sequential Processing 41

PORT(a, b : IN std logic;
¢ : OUT std logic);
END nand2;

ARCHITECTURE nand2 OF nand2 IS
BEGIN
PROCESS(a, b)
VARIABLE temp : std logic;
BEGIN
temp := NOT (a and b);

IF (temp = ‘1’) THEN

c <= temp AFTER 6 ns;
ELSIF (temp = ‘0’) THEN

c <= temp AFTER 5 ns;
ELSE

c <= temp AFTER 6 ns;
END IF;

END PROCESS;
END nand2;

This example shows how to write a model for a simple two-input NAND
gate using a process statement. The usk statement declares a VHDL pack-
age that provides the necessary information to allow modeling this NAND
gate with 9 state logic. (This package is described in Appendix A, “Stan-
dard Logic Package.”) We discuss packages later in Chapter 5, “Subpro-
grams and Packages.” The use statement was included so that the model
could be simulated with a VHDL simulator without any modifications.

The entity declares three ports for the nand2 gate. Ports a and b are the
inputs to the nand2 gate and port c is the output. The name of the ar-
chitecture is the same name as the entity name. This is legal and can save
some of the headaches of trying to generate unique names.

The architecture contains only one statement, a concurrent process
statement. The process declarative part starts at the keyword PRoCESs
and ends at the keyword BEGIN. The process statement part starts at the
keyword BEGIN and ends at the keywords END PRoOCESS. The process dec-
laration section declares a local variable named temp. The process state-
ment part has two sequential statements in it; a variable assignment
statement:

temp := NOT (a AND b);

and an IF THEN ELSE statement:

IF (temp = ‘1’) THEN

42

Chapter Three

c <= temp AFTER 6 ns;
ELSIF (temp = ‘0’) THEN

¢ <= temp AFTER 5 ns;
ELSE

c <= temp AFTER 6 ns;
END IF;

The process contains an explicit sensitivity list with two signals con-
tained in it:

PROCESS(a, b)

The process is sensitive to signals a and b. In this example, a and b are
input ports to the model. Input ports create signals that can be used as
inputs; output ports create signals that can be used as outputs; and inout
ports create signals that can be used as both. Whenever port a or b has a
change in value, the statements inside of the process are executed. Each
statement is executed in serial order starting with the statement at the
top of the process statement and working down to the bottom. After all of
the statements have been executed once, the process waits for another
change in a signal or port in its sensitivity list.

The process declarative part declares one variable called temp. Its type
is std_logic. This type is explained in Appendix A, “Standard Logic
Package,” as it is used throughout the book. For now, assume that the type
defines a signal that is a single bit and can assume the values 0, 1, and
X. Variable temp is used as temporary storage in this model to save the pre-
computed value of the expression (a and b). The value of this expression is
precomputed for efficiency.

Signal Assignment Versus
Variable Assignment

The first statement inside of the process statement is a variable assign-
ment that assigns a value to variable temp. In the previous chapter, we
discussed how signals received values that were scheduled either after
an amount of time or after a delta delay. A variable assignment happens
immediately when the statement is executed. For instance, in this
model, the first statement has to assign a value to variable temp for the
second statement to use. Variable assignment has no delay; it happens
immediately.

Sequential Processing 43

MUX4
Figure 3-1
Four Input Mux Sym- — 10
bol and Function.
— 1
— I2 Q
— I3
A B
A B Q
. ____________________ |
0 0 10
1 0 I1
0 1 12
1 1 13

Let’s look at two examples that illustrate this point more clearly. Both
examples are models of a 4 to 1 multiplexer device. The symbol and truth
table for this device are shown in Figure 3-1. One of the four input signals
is propagated to the output depending on the values of inputs A and B.

The first model for the multiplexer is an incorrect model, and the second
is a corrected version of the model.

Incorrect Mux Example

The incorrect model of the multiplexer has a flaw in it that causes the
model to produce incorrect results. This is shown by the following model:

LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;

ENTITY mux IS

PORT (i0, il, i2, i3, a, b : IN std logic;

44

Chapter Three

g : OUT std logic);
END mux;

ARCHITECTURE wrong of mux IS
SIGNAL muxval : INTEGER;
BEGIN
PROCESS (io, i1, i2, i3, a, b)
BEGIN
muxval <= 0;
IF (a = ‘1’) THEN
muxval <= muxval + 1;
END IF;

IF (b = ‘1’) THEN
muxval <= muxval + 2;

END IF;

CASE muxval IS

WHEN 0 =>

g <= I0 AFTER 10 ns;
WHEN 1 =>

q <= I1 AFTER 10 ns;
WHEN 2 =>

q <= I2 AFTER 10 ns;
WHEN 3 =>

q <= I3 AFTER 10 ns;
WHEN OTHERS =>
NULL;
END CASE;
END PROCESS;
END wrong;

Whenever one of the input signals in the process sensitivity list changes
value, the sequential statements in the process are executed. The process
statement in the first example contains four sequential statements. The first
statement initializes the local signal muxval to a known value (0). The sub-
sequent statements add values to the local signal depending on the value
of the a and b input signals. Finally, the case statement chooses an input
to propagate to the output based on the value of signal muxval. This model
has a significant flaw, however. The first statement:

muxval <= 0;

causes the value 0 to be scheduled as an event for signal muxval. In fact,
the value 0 is scheduled in an event for the next simulation delta because
no delay was specified. When the second statement:

IF (a = ‘1’) THEN
muxval <= muxval + 1;
END IF;

Sequential Processing 45

is executed, the value of signal muxval is whatever was last propagated
to it. The new value scheduled from the first statement has not propa-
gated yet. In fact, when multiple assignments to a signal occur within the
same process statement, the last assigned value is the value propagated.

The signal muxval has a garbage value when entering the process. Its
value is not changed until the process has completed execution of all
sequential statements contained in the process. In fact, if signal bisa ‘1’
value, then whatever garbage value the signal had when entering the
process will have the value 2 added to it.

A better way to implement this example is shown in the next example.
The only difference between the next model and the previous one is the
declaration of muxval and the assignments to muxval. In the previous
model, muxval was a signal, and signal assignment statements were used
to assign values to it. In the next example, muxval is a variable, and
variable assignments are used to assign to it.

Correct Mux Example

In this example, the incorrect model is rewritten to reflect a solution to
the problems with the last model:

LIBRARY IEEE;

USE IEEE.std logic 1164ALL;

ENTITY mux IS

PORT (i0, il, i2, i3, a, b : IN std logic;
g : OUT std logic);

END mux;

ARCHITECTURE better OF mux IS
BEGIN
PROCESS (io, i1, i2, i3, a, b)
VARIABLE muxval : INTEGER;

BEGIN
muxval := 0;
IF (a = ‘1’) THEN
muxval := muxval + 1;
END IF;

IF (b = ‘1’) THEN
muxval := muxval + 2;
END IF;

CASE muxval IS
WHEN 0 =>
g <= I0 AFTER 10 ns;
WHEN 1 =>

46

Chapter Three

q <= I1 AFTER 10 ns;
WHEN 2 =>
q <= I2 AFTER 10 ns;
WHEN 3 =>
g <= I3 AFTER 10 ns;
WHEN OTHERS =>
NULL;
END CASE;
END PROCESS;
END better;

This simple coding difference makes a tremendous operational difference.
When the first statement:

muxval := 0;

is executed, the value 0 is placed in variable muxval immediately. The
value is not scheduled because muxval, in this example, is a variable, not
a signal. Variables represent local storage as opposed to signals, which
represent circuit interconnect. The local storage is updated immediately,
and the new value can be used later in the model for further computations.

Because muxval is initialized to 0 immediately, the next two statements
in the process use 0 as the initial value and add appropriate numbers,
depending on the values of signals a and b. These assignments are also
immediate, and therefore when the case statement executes, variable
muxval contains the correct value. From this value, the correct input signal
can be propagated to the output.

Sequential Statements

Sequential statements exist inside the boundaries of a process statement
as well as in subprograms. In this chapter, we are most concerned with
sequential statements inside process statements. In Chapter 5, we discuss
subprograms and the statements contained within them.

The sequential statements that we discuss are:

IF

CASE

LOOP

EXIT

ASSERT

WAIT

Sequential Processing 47

IF Statements

In Appendix A of the VHDL Language Reference Manual, all VHDL con-
structs are described using a variant of the Bachus-Naur format (BNF)
that is used to describe typical programming languages. If you are not
familiar with BNF, Appendix C gives a cursory description. Becoming
familiar with the BNF will help you better understand how to construct
complex VHDL statements.

The BNF description of the 1F statement looks like this:

if statement ::=
IF condition THEN
sequence of statements
{ELSIF condition THEN
sequence of statements}
[ELSE
sequence_of_ statements]
END IF;

From the BNF description, we can conclude that the IF statement
starts with the keyword IF and ends with the keywords END IF spelled
out as two separate words. There are also two optional clauses: the ELSIF
clause and the ELSE clause. The ELSIF clause is repeatable—more than
one ELSIF clause is allowed; but the ELSE clause is optional, and only
one is allowed. The condition construct in all cases is a boolean expres-
sion. This is an expression that evaluates to either true or false. When-
ever a condition evaluates to a true value, the sequence of statements
following is executed. If no condition is true, then the sequence of state-
ments for the ELSE clause is executed, if one exists. Let’s analyze a few
examples to get a better understanding of how the BNF relates to the
VHDL code.

The first example shows how to write a simple IF statement:

IF (x < 10) THEN
a := b;
END IF;

The IF statement starts with the keyword 1F. Next is the condition
(x < 10), followed by the keyword THEN. The condition is true when the
value of x is less than 10; otherwise it is false. When the condition is true,
the statements between the THEN and END IF are executed. In this exam-
ple, the assignment statement (a := b) is executed whenever x is less than
10. What happens if x is greater than or equal to 10? In this example, there

48

Chapter Three

is no ELSE clause, so no statements are executed in the 1F statement. In-
stead, control is transferred to the statement after the END IF.
Let’s look at another example where the ELSE clause is useful:

IF (day = sunday) THEN

weekend := TRUE;

ELSIF (day = saturday) THEN
weekend := TRUE;

ELSE
weekday := TRUE;

END IF;

In this example, there are two variables—weekend and weekday—that
are set depending on the value of a signal called day. Variable weekend is
set to TRUE whenever day is equal to saturday or sunday. Otherwise, vari-
able weekday is set to TRUE. The execution of the 1F statement starts by
checking to see if variable day is equal to sunday. If this is true, then the
next statement is executed and control is transferred to the statement
following END IF. Otherwise, control is transferred to the ELsIF statement
part, and day is checked for saturday. If variable day is equal to saturday,
then the next statement is executed and control is again transferred to the
statement following the END IF statement. Finally, if day is not equal to
sunday Or saturday, then the ELSE statement part is executed.

The 1F statement can have multiple ELSIF statement parts, but only
one ELSE statement part. More than one sequential statement can exist
between each statement part.

CASE Statements

The caske statement is used whenever a single expression value can be
used to select between a number of actions. Following is the BNF for the
CASE statement:

case_statement ::=
CASE expression IS
case statement alternative
{case statement alternative}
END CASE;

case statement alternative ::=
WHEN choices =>

Sequential Processing 49

sequence of statements

sequence of statements ::=
{sequential statement}

choices ::=
choice{| choice}

choice ::=

SIMPLE expression]|

discrete range|

ELEMENT simple name|
OTHERS

A cask statement consists of the keyword cask followed by an expression
and the keyword 1s. The expression either returns a value that matches one
of the cHOICES in a WHEN statement part, or matches an OTHERS clause. If the
expression matches the cHOICE part of a WHEN choices => clause, the
sequence of statements following is executed. After these statements are
executed, control is transferred to the statement following the END case
clause.

Either the cHoicEs clause must enumerate every possible value of
the type returned by the expression, or the last choice must contain an
OTHERS clause.

Let’s look at some examples to reinforce what the BNF states:

CASE instruction IS
WHEN load accum =>
accum <= data;
WHEN store accum =>
data out <= accum;
WHEN load|store =>
process_IO(addr);
WHEN OTHERS =>
process error (instruction);
END CASE;

The case statement executes the proper statement depending on the
value of input instruction. If the value of instruction is one of the choices
listed in the wHEN clauses, then the statement following the WHEN clause
is executed. Otherwise, the statement following the oTHERS clause is ex-
ecuted. In this example, when the value of instruction is load _accum, the
first assignment statement is executed. If the value of instruction is 1oad
or store, the process 10 procedure is called.

If the value of instruction is outside the range of the choices given, then
the oTHERS clause matches the expression and the statement following the

50

Chapter Three

OTHERS clause is executed. It is an error if an oTHERS clause does not ex-
ist, and the choices given do not cover every possible value of the expression
type.

In the next example, a more complex type is returned by the expression.
(Types are discussed in Chapter 4, “Data Types.”) The case statement
uses this type to select among the choices of the statement:

TYPE vectype IS ARRAY(0 TO 1) OF BIT;
VARIABLE bit vec : vectype;

CASE bit vec IS
WHEN “00” =>
RETURN O0;
WHEN “01” =>
RETURN 1;
WHEN “10” =>
RETURN 2;
WHEN “11” =>
RETURN 3;

END CASE;

This example shows one way to convert an array of bits into an integer.
When both bits of variable bit vec contain 0’ values, the first choice
v00~” matches and the value 0 is returned. When both bits are ‘1’ values,
the value 3, or 117, is returned. This case statement does not need an
OTHERS clause because all possible values of variable bit vec are enu-
merated by the choices.

LOOP Statements

The Loop statement is used whenever an operation needs to be repeated.
Loop statements are used when powerful iteration capability is needed to
implement a model. Following is the BNF for the noop statement:

loop statement ::=
[LOOP label :] [iteration scheme] LOOP
sequence_of_ statements
END LOOP [LOOP labell];

iteration scheme ::=
WHILE condition | FOR LOOP parameter specification

Sequential Processing 51

LOOP parameter specification ::=
identifier IN discrete_range

The rLoor statement has an optional label, which can be used to
identify the Loop statement. The Loor statement has an optional
iteration scheme that determines which kind of Loopr statement is being
used. The iteration scheme includes two types of Loop statements: a
WHILE condition LOOP statement and a “For identifier 1IN
discrete range” statement. The For loop loops as many times as specified
in the discrete range, unless the loop is exited. The WHILE condition
LooP statement loops as long as the condition expression is TRUE.

Let’s look at a couple of examples to see how these statements work:

WHILE (day = weekday) LOOP
day := get next day(day);
END LOOP;

This example uses the WHILE condition form of the Loop statement.
The condition is checked each time before the loop is executed. If the condi-
tion is TRUE, the LooP statements are executed. Control is then transferred
back to the beginning of the loop. The condition is checked again. If TRUE,
the loop is executed again; if not, statement execution continues on the
statement following the END LOOP clause.

The other version of the Loor statement is the For loop:

FOR i IN 1 to 10 LOOP
i squared(i) := i * i;
END LOOP;

This loop executes 10 times whenever execution begins. Its function is
to calculate the squares from 1 to 10 and insert them into the i_squared
signal array. The index variable i starts at the leftmost value of the range
and is incremented until the rightmost value of the range.

In some languages, the loop index (in this example, i) can be assigned
a value inside the loop to change its value. VHDL does not allow any
assignment to the loop index. This also precludes the loop index existing
as the return value of a function, or as an out or inout parameter of a
procedure.

Another interesting point about FOr Loop statements is that the index
value i is locally declared by the For statement. The variable i does not
need to be declared explicitly in the process, function, or procedure. By
virtue of the FOR LooP statement, the loop index is declared locally. If

52

Chapter Three

another variable of the same name exists in the process, function, or
procedure, then these two variables are treated as separate variables
and are accessed by context. Let’s look at an example to illustrate this
point:

PROCESS (i)
BEGIN

X <=1 + 1; -- x is a signal

FOR i IN 1 to a/2 LOOP
qg(i) := a; -- g is a variable
END LOOP;

END PROCESS;

Whenever the value of the signal i in the process sensitivity list
changes value, the process will be invoked. The first statement schedules
the value i + 1 on the signal x. Next, the For loop is executed. The index
value i is not the same object as the signal i that was used to calculate
the new value for signal x. These are separate objects that are each
accessed by context. Inside the For loop, when a reference is made to i,
the local index is retrieved. But outside the For loop, when a reference is
made to i, the value of the signal i in the sensitivity list of the process
is retrieved.

The values used to specify the range in the For loop need not be specific
integer values, as has been shown in the examples. The range can
be any discrete range. A discrete range can be expressed as a
subtype_ indication or a range statement. Let’s look at a few more exam-
ples of how FoRr loops can be constructed with ranges:

PROCESS (c1k)
TYPE day of week IS (sun, mon, tue, wed, thur, fri,
sat) ;
BEGIN
FOR i IN day of week LOOP
IF i = sat THEN
son <= mow_lawn;
ELSIF i = sun THEN
church <= family;
ELSE
dad <= go_ to work;
END IF;
END LOOP;
END PROCESS;

Sequential Processing 53

In this example, the range is specified by the type. By specifying the
type as the range, the compiler determines that the leftmost value is sun,
and the rightmost value is sat. The range then is determined as from
sun to sat.

If an ascending range is desired, use the to clause. The downto clause
can be used to create a descending range. Here is an example:

PROCESS (x, vy)

BEGIN
FOR i IN x downto y LOOP
q(i) := w(i);
END LOOP;

END PROCESS;

When different values for x and y are passed in, different ranges of the
array w are copied to the same place in array q.

NEXT Statement

There are cases when it is necessary to stop executing the statements in
the loop for this iteration and go to the next iteration. VHDL includes a
construct that accomplishes this. The NEXT statement allows the designer
to stop processing this iteration and skip to the successor. When the NEXT
statement is executed, processing of the model stops at the current point
and is transferred to the beginning of the Loop statement. Execution begins
with the first statement in the loop, but the loop variable is incremented
to the next iteration value. If the iteration limit has been reached, pro-
cessing stops. If not, execution continues.
Following is an example showing this behavior:

PROCESS (A, B)
CONSTANT max limit : INTEGER := 255;
BEGIN
FOR i IN 0 TO max_limit LOOP
IF (done(i) = TRUE) THEN
NEXT;
ELSE
done (i) := TRUE;
END IF;

q(i) <= a(i) AND b(i);

END LOOP;
END PROCESS;

54

Chapter Three

The process statement contains one Loor statement. This Loop state-
ment logically “and”s the bits of arrays a and b and puts the results in
array q. This behavior continues whenever the flag in array done is not
true. If the done flag is already set for this value of index i, then the NEXT
statement is executed. Execution continues with the first statement of the
loop, and index i has the value i + 1. If the value of the done array is
not true, then the NEXT statement is not executed, and execution continues
with the statement contained in the ELSE clause for the IF statement.

The NEXT statement allows the designer the ability to stop execution of
this iteration and go on to the next iteration. There are other cases when
the need exists to stop execution of a loop completely. This capability is
provided with the EXIT statement.

EXIT Statement

During the execution of a L.oop statement, it may be necessary to jump
out of the loop. This can occur because a significant error has occurred
during the execution of the model or all of the processing has finished
early. The VHDL Ex1iT statement allows the designer to exit or jump out
of a Loop statement currently in execution. The ExIT statement causes
execution to halt at the location of the ExIT statement. Execution con-
tinues at the statement following the L.oop statement.
Here is an example illustrating this point:

PROCESS (a)

variable int a : integer;
BEGIN
int a := a;

FOR i IN 0 TO max limit LOOP
IF (int_a <= 0) THEN -- less than or
EXIT; -- equal to
ELSE
int a := int a -1;
q(i) <= 3.1416 / REAL(int a * i); -- signal
END IF; -- assign
END LOOP;

Y <= qi

END PROCESS;

Sequential Processing 55

Inside this process statement, the value of int_a is always assumed to
be a positive value greater than 0. If the value of int_a is negative or zero,
then an error condition results and the calculation should not be com-
pleted. If the value of int_a is less than or equal to 0, then the 1IF state-
ment is true and the EX1T statement is executed. The loop is immediately
terminated, and the next statement executed is the assignment statement
to y after the Loop statement.

If this were a complete example, the designer would also want to alert
the user of the model that a significant error had occurred. A method to
accomplish this function would be with an ASSERT statement, which is dis-
cussed later in this chapter.

The ExIT statement has three basic types of operations. The first involves
an EXIT statement without a loop label, or a wHEN condition. If these
conditions are true, then the EXIT statement behaves as follows.

The ExIT statement only exits from the most current Loop statement
encountered. If an ExIT statement is inside a Loop statement that is
nested inside another Loop statement, the EXIT statement only exits the
inner LooP statement. Execution still remains in the outer Loop state-
ment. The exit statement only exits from the most recent Loop statement.
This case is shown in the previous example.

If the Ex1T statement has an optional loop label, then the EXIT state-
ment, when encountered, completes the execution of the loop specified by
the loop label. Therefore, the next statement executed is the one following
the END LooP of the labeled loop. Here is an example:

PROCESS (a)
BEGIN
first loop: FOR i IN 0 TO 100 LOOP
second loop:FOR j IN 1 TO 10 LOOP

EXIT second loop; -- exits the second loop only

EXIT first loop; -- exits the first loop and second
-- loop
END LOOP;
END LOOP;

END PROCESS;

The first EXIT statement only exits the innermost loop because it com-
pletes execution of the loop labeled second loop. The last EXIT statement
completes execution of the loop labeled first loop, which exits from the
first loop and the second loop.

56

Chapter Three

If the EXIT statement has an optional WHEN condition, then the EXIT
statement only exits the loop if the condition specified is true. The next
statement executed depends on whether the ExIT statement has a loop
label specified or not. If a loop label is specified, the next statement executed
is contained in the Loop statement specified by the loop label. If no loop
label is present, the next statement executed is in the next outer loop. Here
is an example of an EXIT statement with a WHEN condition:

EXIT first loop WHEN (i < 10);

This statement completes the execution of the loop labeled first loop
when the expression i < 10 is true.

The ExiT statement provides a quick and easy method of exiting a
Loopr statement when all processing is finished or an error or warning
condition occurs.

ASSERT Statement

The asserT statement is a very useful statement for reporting textual
strings to the designer. The AssSERT statement checks the value of a
boolean expression for true or false. If the value is true, the statement
does nothing. If the value is false, the AsseRT statement outputs a user-
specified text string to the standard output to the terminal.

The designer can also specify a severity level with which to output the
text string. The four levels are, in increasing level of severity, note, warn-
ing, error, and failure. The severity level gives the designer the ability to
classify messages into proper categories.

The note category is useful for relaying information to the user about
what is currently happening in the model. For instance, if the model had
a giant loop that took a long time to execute, an assertion of severity level
note could be used to notify the designer when the loop was 10 percent
complete, 20 percent complete, 30 percent complete, and so on.

Assertions of category warning can be used to alert the designer of con-
ditions that, although not catastrophic, can cause erroneous behavior
later. For instance, if a model expected a signal to be at a known value while
some process was executing, but the signal was at a different value, it may
not be an error as in the EXIT statement example, but a warning to the
user that results may not be as expected.

Sequential Processing 57

Assertions of severity level error are used to alert the designer of con-
ditions that will cause the model to work incorrectly, or not work at all. If
the result of a calculation was supposed to return a positive value, but in-
stead returned a negative value, depending on the operation, this could
be considered an error.

Assertions of severity level failure are used to alert the designer of con-
ditions within the model that can have disastrous effects. An example of
such a condition was discussed in the EXIT statement section. Division
by 0 is an example of an operation that could cause a failure in the
model. Another is addressing beyond the end of an array. In both cases,
the severity level failure can let the designer know that the model is
behaving incorrectly.

The severity level is a good method for classifying assertions into infor-
mational messages to the designer that can describe conditions during
execution of the model.

The asseRT statement is currently ignored by synthesis tools. Because
the asseRT statement is used mainly for exception handling while writ-
ing a model, no hardware is built.

Assertion BNF

Following is the BNF description for the ASsErRT statement:

assert statement ::=
ASSERT condition

[REPORT expressionl]
[SEVERITY expression];

The keyword assEeRrT is followed by a boolean-valued expression called
a condition. The condition determines whether the text expression specified
by the REPORT clause is output or not. If false, the text expression is output;
if true, the text expression is not output.

There are two optional clauses in the AssgRT statement. The first is the
REPORT clause. The REPORT clause gives the designer the ability to specify
the value of a text expression to output. The second is the SEVERITY clause.
The seveErITY clause allows the designer to specify the severity level of
the assERT statement. If the REPORT clause is not specified, the default
value for the asserT statement is assertion violation. If the SEVERITY
clause is not specified, the default value is error.

58

Chapter Three

Let’s look at a practical example of an AsSERT statement to illustrate
how it works. The example performs a data setup check between two
signals that control a D flip-flop. Most flip-flops require the din (data)
input to be at a stable value a certain amount of time before a clock edge
appears. This time is called the setup time and guarantees that the din
value will be clocked into the flip-flop if the setup time is met. This is
shown in the following model. The assertion example issues an error
message to the designer if the setup time is violated (assertion is false):

PROCESS (c1lk, din)
VARIABLE last_d change : TIME := 0 ns;

VARIABLE last d value : std logic := ‘X’;
VARIABLE last clk value : std logic := ‘X’;
BEGIN
IF (last_d value /= din) THEN — /= is
last d change := NOW; — not equal
last d value := din;
END IF;

IF (last_clk value /= clk) THEN
last clk value := clk;

IF (clk = ‘1’) THEN
ASSERT (NOW - last d change >= 20 ns)
REPORT “setup violation”
SEVERITY WARNING;
END IF;
END IF;
END PROCESS;

The process makes use of three local variables to record the time and
last value of signal din as well as the value of the c1k signal. By storing
the last value of c1k and din, we can determine if the signal has changed
value or not. By recording the last time that din changed, we can measure
from the current time to the last din transition to see if the setup time
has been violated or not. (An easier method using attributes is shown in
Chapter 5, “Subprograms and Packages.”)

Whenever din or c1k changes, the process is invoked. The first step in
the process is to see if the din signal has changed. If it has, the time of
the transition is recorded using the predefined function Now. This function
returns the current simulation time. Also, the latest value of din is stored
for future checking.

The next step is to see if signal c1k has made a transition. If the
last clk_value variable is not equal to the current value of c1k, then
we know that a transition has occurred. If signal c1k is a 1’ value,

Sequential Processing 59

then we know that a rising edge has occurred. Whenever a rising edge
occurs on signal c1k, we need to check the setup time for a violation. If
the last transition on signal d was less than 20 nanoseconds ago, then
the expression:

(NOW - last D change)

returns a value that is less than 20 nanoseconds. The ASSERT statement
triggers and reports the assertion message setup violation as a warning
to the designer. If the last transition on signal d occurred more than 20
nanoseconds in the past, then the expression returns a value larger than
20 nanoseconds and the ASSERT statement does not write out the message.
Remember, the AsseERT statement writes out the message when the assert
condition is false.

The message reported to the user has, at a minimum, the user string
and the error classification. Some simulators also include the time of the
assertion report as well as the line number in the file of the assertion.

The asserT statement used in this example was a sequential ASSERT
statement, because it was included inside a PROCESS statement. A con-
current version of the AssSERT statement also exists. It has exactly the
same format as the sequential AsseRT statement and only exists outside
a PROCESS statement or subprogram.

The concurrent ASSERT statement executes whenever any signals that
exist inside of the condition expression have an event upon them. This is
as opposed to the sequential AssERT statement in which execution occurs
when the sequential ASSERT statement is reached inside the PROCESSs
statement or subprogram.

WAIT Statements

The wa1T statement gives the designer the ability to suspend the sequen-
tial execution of a process or subprogram. The conditions for resuming exe-
cution of the suspended process or subprogram can be specified by the
following three different means:

WAIT ON signal changes
WAIT UNTIL an expression is true

WAIT FOR a specific amount of time

60

Chapter Three

WAIT statements can be used for a number of different purposes. The
most common use today is for specifying clock inputs to synthesis tools.
The watT statement specifies the clock for a process statement that is read
by synthesis tools to create sequential logic such as registers and flip-flops.
Other uses are to delay process execution for an amount of time or to
modify the sensitivity list of the process dynamically.

Let’s take a look at a process statement with an embedded wa1T state-
ment that is used to generate sequential logic:

PROCESS

BEGIN
WAIT UNTIL clock = ‘1’ AND clock’EVENT;
qg <= d;

END PROCESS;

This process is used to generate a flip-flop that clocks the value of d into
q when the clock input has a rising edge. The attribute ‘EVENT attached to
input clock is true whenever the clock input has had an event during the
current delta timepoint. (*EVENT is discussed in great detail in Chapter 5.)
The combination of looking for a *1’ value and a change on clock creates
the necessary functionality to look for a rising edge on input clock. The
effect is that the process is held at the waiT statement until the clock has
a rising edge. Then the current value of d is assigned to q.

Reading this description into a synthesis tool creates a D flip-flop
without a set or reset input. A synchronous reset can be created by
the following:

PROCESS

BEGIN
WAIT UNTIL clock = ‘1’ AND clock’EVENT;
IF (reset = ‘1’) THEN

q <= \ol;
ELSE

q <= d;
END IF;

END PROCESS;

When the clock occurs, the reset signal is tested first. If it is active, then
the reset value (107) is assigned to q; otherwise, the 4 input is assigned.
Finally, an asynchronous reset can be added as follows:

PROCESS
BEGIN
IF (reset = ‘1’) THEN

Sequential Processing 61

q <= \0’;

ELSIF clock’EVENT AND clock = ‘1’ THEN
q <= d;

END IF;

WAIT ON reset, clock;
END PROCESS;

This process statement contains a wAIT on statement that causes the
process to halt execution until an event occurs on either reset or clock.
The 1F statement is then executed and, if reset is active, the flip-flop is
asynchronously reset; otherwise, the clock is checked for a rising edge
with which to transfer the d input to the q output of the flip-flop.

A waiT statement can also be used to control the signals a process or sub-
program is sensitive to at any point in the execution. Here is an example:

PROCESS

BEGIN

WAIT ON a; -- 1.
WAIT ON b; -- 2.

END PROCESS;

Execution of the statements in the PROCESS statement proceeds until
point 1 in the VHDL fragment shown in the preceding. The waIT state-
ment causes the process to halt execution at that point. The process does
not continue execution until an event occurs on signal a. The process is
therefore sensitive to changes in signal a at this point in the execution.
When an event occurs on signal a, execution starts again at the statement
directly after the waiT statement at point 1. Execution proceeds until the
WwAIT statement at point 2 is encountered. Once again, execution is halted,
and the process is now sensitive to events on signal b. Therefore, by
adding in two WAIT statements, we can alter the process sensitivity list
dynamically.

Next, let’s discuss the three different options available to the waIT
statement:

WAIT ON signal [,signal]
WAIT UNTIL boolean expression

WAIT FOR time expression

62

Chapter Three

WAIT ON Signal

We have already seen an example of the first type in the previous process
example. The walT oN signal clause specifies a list of one or more signals
that the waiT statement will wait for events upon. If any signal in the
signal list has an event occur on it, execution continues with the statement
following the warT statement. Here is an example:

WAIT ON a, b;

When an event occurs on either a or b, the process resumes with the
statement following the waIT statement.

WAIT UNTIL Expression

The WAIT UNTIL boolean expression clause suspends execution of the
process until the expression returns a value of true. This statement effec-
tively creates an implicit sensitivity list of the signals used in the expres-
sion. When any of the signals in the expression have events occur upon
them, the expression is evaluated. The expression must return a boolean
type or the compiler complains. When the expression returns a true
value, execution continues with the statement following the waIT state-
ment. Otherwise, the process continues to be suspended. For example:

WAIT UNTIL ((x * 10) < 100);

In this example, as long as the value of signal x is greater than or equal
to 10, the warT statement suspends the process or subprogram. When the
value of x is less than 10, execution continues with the statement following
the wa1T statement.

WAIT FOR time_expression

The WAIT FOR time expression clause suspends execution of the
process for the time specified by the time expression. After the time
specified in the time expression has elapsed, execution continues on the

Sequential Processing 63

statement following the waiT statement. A couple of examples are
shown here:

WAIT FOR 10 ns;
WAIT FOR (a * (b + ¢c));

In the first example, the time expression is a simple constant value.
The warT statement suspends execution for 10 nanoseconds. After 10
nanoseconds has elapsed, execution continues with the statement following
the waIT statement.

In the second example, the time expression is an expression that first
must be evaluated to return a time value. After this value is calculated,
the waIT statement uses this value as the time value to wait for.

Multiple WAIT Conditions

The waIT statement examples we have examined so far have shown the dif-
ferent options of the warT statement used separately. The different options
can be used together. A single statement can include an on signal, UNTIL
expression, and FOR time expression clauses. Following is an example:

WAIT ON nmi,interrupt UNTIL ((nmi = TRUE) or
(interrupt = TRUE)) FOR 5 usec;

This statement waits for an event on signals nmi and interrupt and
continues only if interrupt or nmi is true at the time of the event, or until
5 microseconds of time has elapsed. Only when one or more of these
conditions are true does execution continue.

When using a statement such as this:

WAIT UNTIL (interrupt = TRUE) OR (old clk = ‘1’);

be sure to have at least one of the values in the expression contain a signal.
This is necessary to ensure that the warT statement does not wait forever.
Ifboth interrupt and o1d_clk are variables, the warT statement does not
reevaluate when these two variables change value. (In fact, the variables
cannot change value because they are declared in the suspended process.)
Only signals have events on them, and only signals can cause a WAIT
statement or concurrent signal assignment to reevaluate.

64

Chapter Three

WAIT Time-Out

There are instances while designing a model when you are not sure that a
condition will be met. To prevent the warT statement from waiting for-
ever, add a time-out clause. The time-out clause allows execution to
proceed whether or not the condition has been met. Be careful, though,
because this method can cause erroneous behavior unless properly handled.
The following example shows this problem:

ARCHITECTURE wait example of wait example IS
SIGNAL sendB, sendA : std logic;
BEGIN
sendA <= ‘0’;
A : PROCESS
BEGIN
WAIT UNTIL sendB = ‘1’;
sendA <= ‘1’ AFTER 10 ns;

WAIT UNTIL sendB = ‘0’;
sendA <= ‘0’ AFTER 10 ns;

END PROCESS A;

B : PROCESS
BEGIN

WAIT UNTIL sendA = ‘0’;
sendB <= ‘0’ AFTER 10 ns;

WAIT UNTIL sendA = ‘1’;
sendB <= ‘1’ AFTER 10 ns;

END PROCESS B;
END wait_ example;

This architecture has two processes that communicate through two
signals, senda and sendB. This example does not do anything real but is
a simple illustration of how waIT statements can wait forever, a condition
commonly referred to as deadlock.

During simulator initialization, all processes are executed exactly once.
This allows the processes to always start at a known execution point at the
start of simulation. In this example, the process labeled A executes at
startup and stops at the following line:

WAIT UNTIL sendB = 1;

The process labeled B also executes at startup. Execution starts at the
first line of the process and continues until this line:

Sequential Processing 65

WAIT UNTIL sendA = 1;

Execution stops at the first warT statement of the process even though
the expression senda = 0 is satisfied by the first signal assignment of
signal senda. This is because the waIT statement needs an event to occur
on signal senda to cause the expression to be evaluated. Both processes
are now waiting on each other. Neither process can continue because they
are both waiting for a signal set by the other process. If a time-out in-
terval is inserted on each waIT statement, execution can be allowed to con-
tinue. There is one catch to this last statement. Execution continues when
the condition is not met. An ASSERT statement can be added to check for
continuation of the process without the condition being met. The following
example shows the architecture wait example rewritten to include time-
out clauses:

ARCHITECTURE wait timeout OF wait example IS
SIGNAL sendA, sendB : std logic;
BEGIN
A : PROCESS
BEGIN
WAIT UNTIL (sendB = ‘1’) FOR 1 us;

ASSERT (sendB = ‘1’)
REPORT “sendB timed out at ‘'1’”
SEVERITY ERROR;
sendA <= ‘1’ AFTER 10 ns;
WAIT UNTIL (sendB = ‘0’) FOR 1 us;
ASSERT (sendB = ‘'0’)
REPORT “sendB timed out at '0’”
SEVERITY ERROR;

sendA <= ‘0’ AFTER 10 ns;
END PROCESS A;

B : PROCESS

BEGIN

WAIT UNTIL (sendA = ‘0’) FOR 1 us;

ASSERT (sendA = ‘0’)
REPORT “sendA timed out at ‘0’”
SEVERITY ERROR;

sendB <= ‘0’ AFTER 10 ns;

WAIT UNTIL (sendA = ‘1’) FOR 1 us;

ASSERT (sendA = ‘1’)

66

Chapter Three

REPORT “sendA timed out at ‘1’”
SEVERITY ERROR;

sendB <= ‘1’ AFTER 10 ns;

end PROCESS B;
END wait timeout;

Each of the waIT statements now has a time-out expression specified as
1 usec. However, if the time out does happen, the ASSERT statement reports
an error that the waiT statement in question has timed out.

Sensitivity List Versus WAIT Statement

A process with a sensitivity list is an implicit wATIT oN the signals in the
sensitivity list. This is shown by the following example:

PROCESS (clk)
VARIABLE last clk : std logic := ‘X’;
BEGIN
IF (clk /= last _clk) AND (clk
g <= din AFTER 25 ns;
END IF;

*1’) THEN

last clk := clk;

END PROCESS;

This example can be rewritten using a WaIT statement:

PROCESS
VARIABLE last clk : std logic := ‘X’;
BEGIN
IF (clk /= last clk) AND (clk = ‘1’) THEN
g <= din AFTER 25 ns;
END IF;
last clk := clk;

WAIT ON clk;
END PROCESS;

The waiT statement at the end of the process is equivalent to the sensi-
tivity list at the beginning of the process. But why is the waIiT statement
at the end of the process and not at the beginning? During initialization
of the simulator, all processes are executed once. To mimic the behavior
of the sensitivity list, the warT statement must be at the end of the process
to allow the ProCESS statement to execute once.

Sequential Processing 67/

Concurrent Assignment Problem

One of the problems that most designers using sequential signal assignment
statements encounter is that the value assigned in the last statement
does not appear immediately. This can cause erroneous behavior in the
model if the designer is depending on the new value. An example of this
problem is shown here:

LIBRARY IEEE;
USE IEEE.std logic_1164ALL;
ENTITY mux IS
PORT (I0, I1, I2, I3, A, B : IN std logic;
Q : OUT std logic);
END mux;

ARCHITECTURE mux behave OF mux IS
SIGNAL sel : INTEGER RANGE 0 TO 3;
BEGIN
B : PROCESS(a, B, IO, Il, I2, I3)
BEGIN

sel <= 0;
IF (A = ‘1’) THEN sel <= sel + 1; END IF;
IF (B = ‘1’) THEN sel <= sel + 2; END IF;

CASE sel IS

WHEN 0 =>
Q <= IO0;
WHEN 1 =>
Q <= I1;
WHEN 2 =>
Q <= I2;
WHEN 3 =>
Q <= I3;
END CASE;

END PROCESS;
END mux behave;

This model is for a 4 to 1 multiplexer. Depending on the values of a and
B, one of the four inputs (10 to 13) is transferred to output g.

The architecture starts processing by initializing internal signal sel to
the value 0. Then, based on the values of A and B, the values 1 or 2 are
added to sel to select the correct input. Finally, a case statement selected
by the value of sel transfers the value of the input to output o.

This architecture does not work as presently implemented. The value
of signal sel will never be initialized by the first line in the architecture:

sel <= 0;

68

Chapter Three

This statement inside of a process statement schedules an event for
signal sel on the next delta time point, with the value 0. However, pro-
cessing continues in the process statement with the next sequential state-
ment. The value of sel remains at whatever value it had at the entry to
the process. Only when the process has completed is this current delta
finished and the next delta time point started. Only then is the new value
of sel reflected. By this time, however, the rest of the process has already
been processed using the wrong value of sel.

There are two ways to fix this problem. The first is to insert wAIT state-
ments after each sequential signal assignment statement as shown here:

ARCHITECTURE mux fixl OF mux IS
SIGNAL sel : INTEGER RANGE 0 TO 3;
BEGIN
PROCESS
BEGIN
sel <= 0;
WAIT FOR 0 ns; -- or wait on sel

IF (a = ‘1’) THEN sel <= sel + 1; END IF;
WAIT for 0 ns;

IF (b = '1’) THEN sel <= sel + 2; END IF;
WAIT FOR 0 ns;

CASE sel IS

WHEN 0 =>
Q <= IO0;
WHEN 1 =>
Q <= Il;
WHEN 2 =>
Q <= I2;
WHEN 3 =>
Q <= I3;
END CASE;

WAIT ON A, B, IO, Il1, I2, I3;
END PROCESS;
END mux fixl;

The wa1T statements after each signal assignment cause the process to
wait for one delta time point before continuing with the execution. By
waiting for one delta time point, the new value has a chance to propagate.
Therefore, when execution continues after the waiT statement, signal sel
has the new value.

One consequence of the waIT statements, however, is that the process can
no longer have a sensitivity list. A process with waIT statements contained
within it or within a subprogram called from within the process cannot

Sequential Processing 69

have a sensitivity list. A sensitivity list implies that execution starts from
the beginning of the procedure, while a waiT statement allows suspending
a process at a particular point. The two are mutually exclusive.

Because the process can no longer have a sensitivity list, a waIT state-
ment has been added to the end of the process that exactly imitates the
behavior of the sensitivity list. This is the following statement:

WAIT ON A, B, IO, I1, I2, I3;

The warT statement proceeds whenever any of the signals on the right
side of the keyword oN have an event upon them.

This method of solving the sequential signal assignment problem causes
the process to work, but a better solution is to use an internal variable in-
stead of the internal signal, as shown here:

ARCHITECTURE mux fix2 OF mux IS

BEGIN
PROCESS (A, B, IO, I1, I2, I3)
VARIABLE sel : INTEGER RANGE 0 TO 3;

BEGIN
sel := 0;
IF (A = ‘1’) THEN sel := sel + 1l; END IF;
IF (B = ‘1’) THEN sel := sel + 2; END IF;

CASE sel IS

WHEN 0 =>
Q <= IO;
WHEN 1 =>
Q <= Il;
WHEN 2 =>
Q <= I2;
WHEN 3 =>
Q <= I3;
END CASE;

END PROCESS;
END mux fix2;

The signal sel from the preceding example has been converted from
an internal signal to an internal variable. This was accomplished by
moving the declaration from the architecture declaration section to the
process declaration section. Variables can only be declared in the process
or subprogram declaration section.

Also, the signal assignments to sel have been changed to variable
assignment statements. Now, when the first assignment to sel is exe-
cuted, the value is updated immediately. Each successive assignment is
also executed immediately so that the correct value of sel is available in
each statement of the process.

/70

Chapter Three

Passive Processes

Passive processes are processes that exist in the entity statement part of an
entity. They are different from a normal process in that no signal assign-
ment is allowed. These processes are used to do all sorts of checking
functions. For instance, one good use of a passive process is to check the
data setup time on a flip-flop.

The advantage of the passive process over the example discussed in the
ASSERT statement section is that, because the passive process exists in
the entity, it can be applied to any architecture of the entity. Take a look
at the following example:

LIBRARY IEEE;

USE IEEE.std_logic_1164ALL;

ENTITY dff IS

PORT(CLK, din : IN std logic;
Q, QB : OUT std logic);

BEGIN
PROCESS (CLK, din)
VARIABLE last d change : TIME := 0 ns;
VARIABLE last clk, last d value : std logic := ‘X’;
BEGIN
IF (din /= last_d value) THEN
last d change := now;
last d value := din;

END IF;

IF (CLK /= last_clk) THEN
IF (CLK = ‘1’) THEN
ASSERT (now - last d change >= 15 ns)
REPORT “setup error”
SEVERITY ERROR;
END IF;

last clk := CLK;
END IF;
END PROCESS;
END dff;

ARCHITECTURE behave OF dff IS
BEGIN

END behave;

ARCHITECTURE struct OF dff IS
BEGIN

Sequential Processing /1

END struct;

ARCHITECTURE switch OF dff IS
BEGIN

END switch;

This example shows the entity for a D flip-flop with a passive process
included in the entity that performs a data setup check with respect to the
clock. This setup check function was described in detail in the ASSERT state-
ment description. What this example shows is that, when the setup check
function is contained in the entity statement part, each of the architectures
for the entity have the data setup check performed automatically. With-
out this functionality, each of the architectures would have to have the
setup check code included. This introduces more code to maintain and can
introduce inconsistencies between architectures.

The only restriction on these processes, as mentioned earlier, is that
no signal assignment is allowed in a passive process. In the preceding ex-
ample, a process statement was used to illustrate a passive process. A pas-
sive process can also exist as a concurrent statement that does not do any
signal assignment. Examples of such statements are concurrent ASSERT
statements and concurrent subprogram invocations. An example of two
concurrent ASSERT statements as passive processes are shown here:

ENTITY adder IS
PORT(A, B : IN INTEGER;
X : OUT INTEGER);
BEGIN
ASSERT (A < 256)
REPORT “A out of range”
SEVERITY ERROR;

ASSERT (B < 256)
REPORT “B out of range”
SEVERITY ERROR;

END adder;

The first AssERT statement checks to make sure that input a is not out
of range, and the second assertion checks that input B is not out of the
range of the adder. Each of these statements acts as an individual process

/2

SUMMARY

Chapter Three

that is sensitive to the signal in its expression. For instance, the first as-
sertion is sensitive to signal A because that signal is contained in its ex-
pression.

In this chapter, we discussed the following:

How process statements are concurrent statements that delineate
areas of sequential statements.

How process statements can be used to control when a process is
activated.

How signal assignments are scheduled and variable assignments
happen immediately within a process statement.

How 1F, casg, and LooP statements can be used to control the flow
of execution within a model.

How ASSERTION statements can be used to check for error condi-
tions or report information to the user.

The three forms of the warT statement. How WAIT UNTIL is used
for specifying clocks for synthesis, and how WAIT oN can be used to
modify the sensitivity list.

How passive processes can be used to perform error checking and
other tasks across a number of architectures by existing in an
ENTITY statement.

The next chapter focuses on all of the different data types of VHDL that
can be used in models.

CHAPTER

Data Types

In this chapter, we examine the object types used in
VHDL. The types allowed in VHDL consist of everything
from scalar numeric types to composite arrays and
records to file types. The first step in looking at the var-
ied VHDL types is to review the VHDL objects that can
attain the varied types. Then we use examples to show
how many types of descriptions can be made easier to
read by using the power of enumerated and composite
data types.

74

Chapter Four

Object Types

A VHDL object consists of one of the following:

Signal, which represents interconnection wires that connect com-
ponent instantiation ports together.

Variable, which is used for local storage of temporary data, visible
only inside a process.

Constant, which names specific values.

Signal

Signal objects are used to connect entities together to form models. Signals
are the means for communication of dynamic data between entities. A
signal declaration looks like this:

SIGNAL signal name : signal type [:= initial valuel;

The keyword sieNaL is followed by one or more signal names. Each
signal name creates a new signal. Separating the signal names from the
signal type is a colon. The signal type specifies the data type of the infor-
mation that the signal contains. Finally, the signal can contain an initial
value specifier so that the signal value may be initialized.

Signals can be declared in entity declaration sections, architecture
declarations, and package declarations. Signals in package declarations
are also referred to as global signals because they can be shared among
entities.

Following is an example of signal declarations:

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
PACKAGE sigdecl IS
TYPE bus type IS ARRAY(0 to 7) OF std logic;

SIGNAL vcc : std logic := ‘1’;
SIGNAL ground : std logic := ‘0’;

FUNCTION magic_ function(a : IN bus type) RETURN
bus type;

END sigdecl;

USE WORK.sigdecl.ALL;
LIBRARY IEEE;

Data Types

75

USE IEEE.std logic 1164.ALL;
ENTITY board design is
PORT(data in : IN bus type;
data out : OUT bus type);

SIGNAL sys clk : std logic := ‘1’;
END board design;

ARCHITECTURE data flow OF board design IS
SIGNAL int bus : bus_ type;
CONSTANT disconnect value : bus_type
= (X7, X', ‘X', ‘X', ‘X', X', ‘X', ‘X');
BEGIN
int bus <= data in WHEN sys clk = ‘1’
ELSE int bus;

data out <= magic function(int bus) WHEN sys clk = ‘0’
ELSE disconnect value;

sys clk <= NOT(sys clk) after 50 ns;
END data flow;

Signals vec and ground are declared in package sigdecl. Because
these signals are declared in a package, they can be referenced by more
than one entity and are therefore global signals. For an entity to refer-
ence these signals, the entity needs to use package sigdecl. To use the
package requires a VHDL usk clause, as shown here:

USE work.sigdecl.vcc;
USE work.sigdecl.ground;

Or:
USE work.sigdecl.ALL;

In the first example, the objects are included in the entity by specific
reference. In the second example, the entire package is included in the en-
tity. In the second example, problems may arise because more than what
is absolutely necessary is included. If more than one object of the same
name results because of the UsE clause, none of the objects is visible, and a
compile operation that references the object fails.

SIGNALS GLOBAL TO ENTITIES Inside the entity declaration
section for entity board designis a signal called sys_c1k. This signal can
be referenced in entity board design and any architecture for entity
board design.In this example, there is only one architecture, data flow,

76

Chapter Four

for board design. The signal sys clk can therefore be assigned to and
read from in entity board design and architecture data flow.

ARCHITECTURE LOCAL SIGNALS Inside of architecture
data_flow is a signal declaration for signal int_bus. Signal int_bus is of
type bus_type, a type defined in package sigdecl. The sigdecl package is
used in entity board; therefore, the type bus_type is available in architec-
ture data_flow. Because the signal is declared in the architecture decla-
ration section, the signal can only be referenced in architecture data_flow
or in any process statements in the architecture.

Variables

Variables are used for local storage in process statements and subprograms.
(Subprograms are discussed in Chapter 6, “Predefined Attributes.”) As
opposed to signals, which have their values scheduled in the future, all
assignments to variables occur immediately. A variable declaration looks
like this:

VARIABLE variable name {,variable name} : variable typel:=
value] ;

The keyword varRIABLE is followed by one or more variable names. Each
name creates a new variable. The construct variable type defines the
data type of the variable, and an optional initial value can be specified.

Variables can be declared in the process declaration and subprogram
declaration sections only. An example using two variables is shown here:

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
ENTITY and5 IS
PORT (a, b, ¢, d, e : IN std logic;
g : OUT std logic);
END and5;

ARCHITECTURE and5 OF and5 IS
BEGIN

PROCESS(a, b, ¢, d, e)
VARIABLE state : std logic;
VARIABLE delay : time;
BEGIN

state := a AND b AND ¢ AND d AND e;

IF state = ‘1’ THEN

Data Types

77

delay := 4.5 ns;
ELSIF state = ‘0’ THEN
delay := 3 ns;
ELSE
delay := 4 ns;
END IF;

q <= state AFTER delay;

END PROCESS;
END and5;

This example is the architecture for a five-input AnD gate. There are two
variable declarations in the process declaration section: one for variable
state and one for variable delay. Variable state is used as a tempo-
rary storage area to hold the value of the anD function of the inputs. Tem-
porary-storage value delay is used to hold the delay value that will be
used when scheduling the output value. Both of these values cannot be sta-
tic data because their values depend on the values of inputs a, b, ¢, d, and
e. Signals could have been used to store the data, but there are several rea-
sons why a signal was not used:

Variables are inherently more efficient because assignments hap-
pen immediately, while signals must be scheduled to occur.

Variables take less memory, while signals need more information
to allow for scheduling and signal attributes.

Using a signal would have required a waIT statement to synchronize
the signal assignment to the same execution iteration as the usage.

When any of the input signals a, b, ¢, d, or e change, the process is in-
voked. Variable state is assigned the aAND of all of the inputs. Next, based
on the value of variable state, variable delay is assigned a delay value.
Based on the delay value assigned to variable delay, output signal q will
have the value of variable state assigned to it.

Constants

Constant objects are names assigned to specific values of a type. Constants
give the designer the ability to have a better-documented model, and a
model that is easy to update. For instance, if a model requires a fixed
value in a number of instances, a constant should be used. By using a
constant, the designer can change the value of the constant and recompile,

/8

Chapter Four

and all of the instances of the constant value are updated to reflect the
new value of the constant.

A constant also provides a better-documented model by providing more
meaning to the value being described. For instance, instead of using the
value 3.1414 directly in the model, the designer should create a constant
as in the following:

CONSTANT PI: REAL := 3.1414;

Even though the value is not going to change, the model becomes more
readable.
A constant declaration looks like this:

CONSTANT constant name {,constant name} : type name[:=
valuel ;

The value specification is optional, because VHDL also supports deferred
constants. These are constants declared in a package declaration whose
value is specified in a package body.

A constant has the same scoping rules as signals. A constant declared
in a package can be global if the package is used by a number of entities. A
constant in an entity declaration section can be referenced by any archi-
tecture of that entity. A constant in an architecture can be used by any
statement inside the architecture, including a process statement. A constant
declared in a process declaration can be used only in a process.

Data Types

All of the objects we have been discussing until now—the signal, the
variable, and the constant—can be declared using a type specification to
specify the characteristics of the object. VHDL contains a wide range of
types that can be used to create simple or complex objects.

To define a new type, you must create a type declaration. A type dec-
laration defines the name of the type and the range of the type. Type
declarations are allowed in package declaration sections, entity declara-
tion sections, architecture declaration sections, subprogram declaration
sections, and process declaration sections.

A type declaration looks like this:

TYPE type name IS type mark;

Data Types

Figure 4-1
VHDL Data Types
Diagram.

79

A type mark construct encompasses a wide range of methods for spec-
ifying a type. It can be anything from an enumeration of all of the values
of a type to a complex record structure. In the next few sections, type
marks are examined. All of the scoping rules that were defined for signals
and variables apply to type declarations also.

Figure 4-1 is a diagram showing the types available in VHDL. The four
broad categories are scalar types, composite types, access types, and file
types. Scalar types include all of the simple types such as integer and real.
Composite types include arrays and records. Access types are the equiv-
alent of pointers in typical programming languages. Finally, file types give
the designer the ability to declare file objects with designer-defined file

types.

Scalar Types

Scalar types describe objects that can hold, at most, one value at a time.
The type itself can contain multiple values, but an object that is declared

Composite

< Access >

Physical

C Enumerated

80

Chapter Four

to be a scalar type can hold, at most, one of the scalar values at any point
in time. Referencing the name of the object references the entire object.
Scalar types encompass these four classes of types:

Integer types
Real types
Enumerated types

Physical types

INTEGER TYPES are exactly like mathematical integers. All of the nor-
mal predefined mathematical functions like add, subtract, multiply, and di-
vide apply to integer types. The VHDL LRM does not specify a maximum
range for integers, but does specify the minimum range: from -2,147,483,647
to 12,147,483,647. The minimum range is specified by the Standard
package contained in the Standard Library.

The Standard package defines all of the predefined VHDL types pro-
vided with the language. The Standard Library is used to hold any packages
or entities provided as standard with the language.

It may seem strange to some designers who are familiar with two’s
complement representations that the integer range is specified from
—2,147,483,647 to +2,147,483,647 when two’s complement integer repre-
sentations usually allow one smaller negative number, —2,147,483,648. The
language defines the integer range to be symmetric around 0.

Following are some examples of integer values:

ARCHITECTURE test OF test IS
BEGIN
PROCESS (X)
VARIABLE a : INTEGER;
VARIABLE b : int type;

BEGIN
a = 1; --0k 1
a := -1; --0k 2
a := 1.0; --error 3

END PROCESS;

END test;

The first two statements (1 and 2) show examples of a positive integer
assignment and a negative integer assignment. Line 3 shows a non-
integer assignment to an integer variable. This line causes the compiler
to issue an error message. Any numeric value with a decimal point is con-
sidered a real number value. Because VHDL is a strongly typed language,

Data Types

81

for the assignment to take place, either the base types must match or a
type-casting operation must be performed.

REAL TYPES Real types are used to declare objects that emulate
mathematical real numbers. They can be used to represent numbers out
of the range of integer values as well as fractional values. The minimum
range of real numbers is also specified by the Standard package in the
Standard Library, and is from —1.0E+38 to +1.0E+38. These numbers
are represented by the following notation:

+ or -number.number[E + or -number]
Following are a few examples of some real numbers:

ARCHITECTURE test OF test IS
SIGNAL a : REAL;

BEGIN
a <= 1.0; --O0k 1
a <= 1; --error 2
a <= -1.0E10; --0k 3
a <= 1.5E-20; --0k 4
a <= 5.3 ns; --error 5
END test;

Line 1 shows how to assign a real number to a signal of type REaL. All
real numbers have a decimal point to distinguish them from integer values.
Line 2 is an example of an assignment that does not work. Signal a is of
type REAL, and a real value must be assigned to signal a. The value 1 is
of type INTEGER, so a type mismatch is generated by this line.

Line 3 shows a very large negative number. The numeric characters to
the left of the character E represent the mantissa of the real number,
while the numeric value to the right represents the exponent.

Line 4 shows how to create a very small number. In this example, the
exponent is negative so the number is very small.

Line 5 shows how a type TIME cannot be assigned to a real signal. Even
though the numeric part of the value looks like a real number, because of
the units after the value, the value is considered to be of type TIME.

ENUMERATED TYPES An enumerated type is a very powerful tool
for abstract modeling. A designer can use an enumerated type to repre-
sent exactly the values required for a specific operation. All of the values
of an enumerated type are user-defined. These values can be identifiers
or single-character literals. An identifier is like a name. Examples are x,
abc, and black. Character literals are single characters enclosed in quotes,
such as *x’, *17, and ‘0-.

82

Chapter Four

A typical enumerated type for a four-state simulation value system looks
like this:

TYPE fourval IS (‘X’, ‘0’', ‘1’, ‘Z’');

This type contains four character literal values that each represent
a unique state in the four-state value system. The values represent the
following conditions:

*X’—An unknown value
*0’ —A logical 0 or false value
‘1 —A logical 1 or true value

vz’ —A tristate or open collector value

Character literals are needed for values ‘1’ and ‘0’ to separate these
values from the integer values 1 and 0. It would be an error to use the val-
ues 1 and 0 in an enumerated type, because these are integer values. The
characters x and z do not need quotes around them because they do not
represent any other type, but the quotes were used for uniformity.

Another example of an enumerated type is shown here:

TYPE color IS (red, yellow, blue, green, orange);

In this example, the type values are very abstract—that is, not repre-
senting physical values that a signal might attain. The type values in type
color are also all identifiers. Each identifier represents a unique value of
the type; therefore, all identifiers of the type must be unique.

Each identifier in the type has a specific position in the type, determined
by the order in which the identifier appears in the type. The first identifier
has a position number of 0, the next a position number of 1, and so on.
(Chapter 5, “Subprograms and Packages” includes some examples using
position numbers of a type.)

A typical use for an enumerated type would be representing all of the
instructions for a microprocessor as an enumerated type. For instance, an
enumerated type for a very simple microprocessor could look like this:

TYPE instruction IS (add, sub, 1lda, 1ldb, sta, stb, outa,
xfr);

The model that uses this type might look like this:

PACKAGE instr IS
TYPE instruction IS (add, sub, 1lda, 1ldb, sta, stb,
outa, xfr);

Data Types

83

END instr;

USE WORK.instr.ALL;
ENTITY mp IS
PORT (instr
addr

data

IN instruction;
IN INTEGER;
INOUT INTEGER) ;

o ss oo

END mp;

ARCHITECTURE mp OF mp IS
BEGIN
PROCESS (instr)
TYPE regtype IS ARRAY(0 TO 255) OF INTEGER;
VARIABLE a, b : INTEGER;
VARIABLE reg : regtype;

BEGIN
--select instruction to
CASE instr is --execute
WHEN lda =>
a := data; --load a accumulator
WHEN 1ldb =>
b := data; --load b accumulator

a := a b; --add accumulators
WHEN sub =>
a := a -b; --subtract accumulators

WHEN sta =>
reg(addr) := a; --put a accum in reg array

WHEN stb =>
reg(addr) := b; --put b accum in reg array

WHEN outa =>

data <= a; --output a accum
WHEN xfr => --transfer b to a
a := b;
END CASE;
END PROCESS;

END mp;

The model receives an instruction stream (instr), an address stream
(addr), and a data stream (data). Based on the value of the enumerated
value of instr, the appropriate instruction is executed. A case statement
is used to select the instruction to execute. The statement is executed and
the process then waits for the next instruction.

Another common example using enumerated types is a state machine.
State machines are commonly used in designing the control logic for ASIC

84 Chapter Four

or FPGA devices. They represent a very easy and understandable method
for specifying a sequence of actions over time, based on input signal values.

ENTITY traffic_light IS
PORT (sensor : IN std logic;
clock : IN std logic;
red light : OUT std logic;
green light : OUT std logic;
yellow light : OUT std logic);
END traffic light;

ARCHITECTURE simple OF traffic light IS
TYPE t state is (red, green, yellow);
Signal present state, next state : t state;
BEGIN
PROCESS (present_state, sensor)
BEGIN
CASE present state IS
WHEN green =>
next state <= yellow;
red light <= ‘0’;
green light <= ‘1’;
yellow light <= ‘0’;
WHEN red =>
red light <= ‘1’;
green light <= ‘0’;
yellow light <= ‘0’;
IF (semsor = ‘1’) THEN
next state <= green;
ELSE
next state <= red;
END IF;
WHEN yellow =>
red light <= ‘0’;
green light <= ‘0’;
yellow light <= ‘1’;
next state <= red;
END CASE;
END PROCESS;

PROCESS
BEGIN
WAIT UNTIL clock’EVENT and clock = ‘1’;
present state <= next state;
END PROCESS;
END simple;

The state machine is described by two processes: the first calculates the
next state logic, and the second latches the next state into the current
state. Notice how the enumerated type makes the model much more
readable because the state names represent the color of the light that is
currently being displayed.

Data Types

85

PHYSICAL TYPES Physical types are used to represent physical
quantities such as distance, current, time, and so on. A physical type pro-
vides for a base unit, and successive units are then defined in terms of this
unit. The smallest unit representable is one base unit; the largest is deter-
mined by the range specified in the physical type declaration. An example
of a physical type for the physical quantity current is shown here:

TYPE current IS RANGE 0 to 1000000000

UNITS
na; --nano amps
ua = 1000 na; --micro amps
ma = 1000 ua; --milli amps
a = 1000 ma; - -amps

END UNITS;

The type definition begins with a statement that declares the name of the
type (current) and the range of the type (0 to 1,000,000,000). The first unit
declared in the uNITs section is the base unit. In the preceding example,
the base unit is na. After the base unit is defined, other units can be defined
in terms of the base unit or other units already defined. In the preceding
example, the unit ua is defined in terms of the base unit as 1000 base
units. The next unit declaration is ma. This unit is declared as 1000 ua.
The units declaration section is terminated by the END uNITS clause.

More than one unit can be declared in terms of the base unit. In the pre-
ceding example, the ma unit can be declared as 1000 ma or 1,000,000 na. The
range constraint limits the minimum and maximum values that the phys-
ical type can represent in base units. The unit identifiers all must be unique
within a single type. It is illegal to have two identifiers with the same name.

PREDEFINED PHYSICAL TYPES
The only predefined physical type in VHDL is the physical type TIME. This
type is shown here:

TYPE TIME IS RANGE <implementation defined>

UNITS
fs; --femtosecond
ps = 1000 f£fs; --picosecond
ns = 1000 ps; --nanosecond
us = 1000 ns; --microsecond
ms = 1000 us; --millisecond
sec = 1000 ms; --second
min = 60 sec; --minute
hr = 60 min; --hour

END UNITS;

86 Chapter Four

The range of time is implementation-defined but has to be at least the
range of integer, in base units. This type is defined in the Standard package.
Following is an example using a physical type:

PACKAGE example IS
TYPE current IS RANGE 0 TO 1000000000

UNITS

na; --nano amps
ua = 1000 na; --micro amps
ma = 1000 ua; --milli amps
a = 1000 ma; - -amps

END UNITS;

TYPE load factor IS (small, med, big):;
END example;

USE WORK.example.ALL;
ENTITY delay calc IS
PORT (out current : OUT current;
load : IN load_ factor;
delay : OUT time);
END delay calc;

ARCHITECTURE delay calc OF delay calc IS
BEGIN
delay <= 10 ns WHEN (load = small) ELSE
20 ns WHEN (load med) ELSE
30 ns WHEN (load big) ELSE
10 ns;

out current <= 100 ua WHEN (load = small)ELSE

1l ma WHEN (load = med) ELSE
10 ma WHEN (load = big) ELSE
100 ua;

END delay calc;

In this example, two examples of physical types are represented. The
first is of predefined physical type TIME and the second of user-specified
physical type current. This example returns the current output and delay
value for a device based on the output load factor.

Composite Types

Looking back at the VHDL types diagram in Figure 4-1, we see that
composite types consist of array and record types. Array types are groups
of elements of the same type, while record types allow the grouping of

Data Types

87

elements of different types. Arrays are useful for modeling linear struc-
tures such as RAMs and ROMs, while records are useful for modeling
data packets, instructions, and so on.

Composite types are another tool in the VHDL toolbox that allow very
abstract modeling of hardware. For instance, a single array type can repre-
sent the storage required for a ROM.

ARRAY TYPES Array types group one or more elements of the same type
together as a single object. Each element of the array can be accessed by one
or more array indices. Elements can be of any VHDL type. For instance,
an array can contain an array or a record as one of its elements.

In an array, all elements are of the same type. The following example
shows a type declaration for a single dimensional array of bits:

TYPE data bus IS ARRAY(0 TO 31) OF BIT;

This declaration declares a data type called data_bus that is an array of
32 bits. Each element of the array is the same as the next. Each element
of the array can be accessed by an array index. Following is an example
of how to access elements of the array:

VARIABLE X: data bus;
VARIABLE Y: BIT;

Y .
Y :

X(0); --line 1
X(15); --line 2

This example represents a small VHDL code fragment, not a complete
model. In line 1, the first element of array x is being accessed and assigned
to variable v, which is of bit type. The type of ¥ must match the base type
of array x for the assignment to take place. If the types do not match, the
compiler generates an error.

In line 2, the sixteenth element of array x is being assigned to variable
Y. Line 2 is accessing the sixteenth element of array x because the array
index starts with 0. Element 0 is the first element, element 1 is the second,
and so on.

Following is another more comprehensive example of array accessing:

PACKAGE array example IS
TYPE data bus IS ARRAY(0 TO 31) OF BIT;
TYPE small bus IS ARRAY(0 TO 7) OF BIT;
END array example;

88

Chapter Four

USE WORK.array example.ALL;
ENTITY extract IS
PORT (data : IN data bus;
start : IN INTEGER;
data out : OUT small bus);
END extract;

ARCHITECTURE test OF extract IS
BEGIN
PROCESS (data, start)
BEGIN
FOR i IN 0 TO 7 LOOP
data out(i) <= data(i + start);
END LOOP;
END PROCESS;
END test;

This entity takes in a 32-bit array element as a port and returns 8 bits
of the element. The 8 bits of the element returned depend on the value of
index start. The 8 bits are returned through output port data out.
(There is a much easier method to accomplish this task, with functions,
described in Chapter 5, “Subprograms and Packages.”)

A change in value of start or data triggers the process to execute. The
FOR loop loops 8 times, each time copying a single bit from port data to
port data_out. The starting point of the copy takes place at the integer
value of port start. Each time through the loop, the ith element of
data_out is assigned the (i + start) element of data.

The examples shown so far have been simple arrays with scalar base
types. In the next example, the base type of the array is another array:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
PACKAGE memory IS

CONSTANT width : INTEGER
CONSTANT memsize : INTEGER

TYPE data out IS ARRAY (0 TO width) OF std_logic;
TYPE mem data IS ARRAY(0 TO memsize) OF data out;
END memory;

LIBRARY IEEE;

USE IEEE.std logic_1164.ALL;

USE WORK.memory.ALL;

ENTITY rom IS

PORT (addr

data
cs

END rom;

IN INTEGER;
OUT data out;
IN std logic);

Data Types

89

ARCHITECTURE basic OF rom IS
CONSTANT z_ state : data out := (‘Z’, ‘Z’, ‘z2’', ‘Z');
CONSTANT x_ state : data out := (X', ‘X', ‘X', ‘X’);
CONSTANT rom data : mem data :=
((¢ r0", 0", 0", M0"),
(\ol' \OI’ \ol’ \11)’
(0", 0", 17, r0"),
(\01' \OI' \11’ \1!)’
(\OI' \1', ‘0’, ‘0’),
(0", 17, 0", 1),
(\OI' \1', \11' \0!)’
(\OI' \1', \1’, \ll));
BEGIN
ASSERT addr <= memsize
REPORT “addr out of range”
SEVERITY ERROR;

data <= rom data(addr) AFTER 10 ns WHEN cs = ‘1’ ELSE
z_state AFTER 20 ns WHEN cs = ‘0’ ELSE
x _state AFTER 10 ns;
END basic;

Package memory uses two constants to define two data types that form
the data structures for entity rom. By changing the constant width and
recompiling, we can change the output width of the memory. The initializa-
tion data for the ROM would also have to change to reflect the new width.

The data types from package memory are also used to define the data
types of the ports of the entity. In particular, the data port is defined to
be of type data_ out.

The architecture defines three constants used to determine the output
value. The first defines the output value when the cs inputisa *0’.The
value output is consistent with the rom being unselected. The second con-
stant defines the output value when rom has an unknown value on the cs
input. The value output by rom is unknown as well. The last constant de-
fines the data stored by rom. (This is a very efficient method to model the
ROM, but if the ROM data changes, the model needs to be recompiled.)
Depending on the address to rom, an appropriate entry from this third
constant is output. This happens when the cs input is a 17 value.

The rom data type in this example is organized as eight rows (0 to 7)
and four columns (0 to 3). It is a two-dimensional structure, as shown in
Figure 4-2.

To initialize the constant for the rom data type, an aggregate initial-
ization is required. The table after the rom data constant declaration
is an aggregate used to initialize the constant. The aggregate value is
constructed as a table for readability; it could have been all on one line.

90

Figure 4-2 Addr Bit 3 Bit 2 Bit 1 Bit 0
Rom Data Represen-
tation. 0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

Chapter Four

The structure of the aggregate must match the structure of the data
type for the assignment to occur. Following is a simple example of an

aggregate assignment:

PROCESS (X)
TYPE bitvec IS ARRAY(0 TO 3) OF BIT;
VARIABLE Y : bitvec;

BEGIN
Y := (\11' \01’ \11' \OI);

END PROCESS;

Variable Y has an element of type B1T in the aggregate for each element
of its type. In this example, the variable Y is 4 bits wide, and the aggre-

gate is 4 bits wide as well.

The constant rom data from the rom example is an array of arrays.
Each element of type mem data is an array of type data out. The aggre-
gate assignment for an array of arrays can be represented by the form

shown here:

value := ((el, e2, . . . ,en), . . . ,(el,

El

e2, . . . ,en));

En

This is acceptable, but a much more readable form is shown here:

Data Types

91

value := ((el, e2, . . . , en), --El
(el, e2, . . . , en), --E2
(el, e2, . . . , en)) --En

In the statement part of the rom example, there is one conditional signal
assignment statement. The output port data is assigned a value based on
the value of the cs input. The data type of the value assigned to port data
must be of type data out because port data has a type of data out. By
addressing the rom data constant with an integer value, a data type of
data_out is returned.

A single value can be returned from the array of arrays by using the
following syntax:

bit value := rom data(addr) (bit_ index):;

The first index (addr) returns a value with a data type of data out. The
second index (bit_index) indexes the data out type and returns a single
element of the array.

MULTIDIMENSIONAL ARRAYS

The constant rom data in the rom example was represented using an
array of arrays. Following is another method for representing the data
with a multidimensional array:

TYPE mem data md IS ARRAY(0 TO memsize, 0 TO width) OF
std logic;

CONSTANT rom data md : mem data :=
((‘0’, ‘0’, ‘0’, \01)’

\OI' \OI’ \01' \ll)l

\01' \01’ \11' \OI)’

‘0’, ‘0’, ‘1’, \ll)'

\OI' \11’ \01' \OI)’

\OI’ \11’ \OI' \11)’

0/, ‘1’, 1’1, \01)'

\OI' \11’ \11' \11));

A~ N~ A~~~

The declaration shown here declares a two-dimensional array type
mem data md. When constant rom data md is declared using this type, the
initialization syntax remains the same, but the method of accessing an el-
ement of the array is different. In the following example, a single element
of the array is accessed:

X := rom data md(3, 3);

92

Chapter Four

This access returns the fourth element of the fourth row, which, in this
example,is a ‘1’.

UNCONSTRAINED ARRAY TYPES
An unconstrained array type is a type whose range or size is not completely
specified when the type is declared. This allows multiple subtypes to share
a common base type. Entities and subprograms can then operate on all of
the different subtypes with a single subprogram, instead of a subprogram
or entity per size.

Following is an example of an unconstrained type declaration:

TYPE BIT VECTOR IS ARRAY (NATURAL RANGE <>) OF BIT;

This is the type declaration for type BIT vECTOR from the Standard
package. This type declaration declares a type that is an array of type BIT.
However, the number of elements of the array is not specified. The notation
that depicts this is:

RANGE <>

This notation specifies that the type being defined has an uncon-
strained range. The word NATURAL before the keyword RANGE, in the type
declaration, specifies that the type is bounded only by the range of
NATURAL. Type NATURAL is defined in the Standard package to have a range
from 0 to integer’ high (the largest integer value). Type BIT VECTOR, then,
can range in size from 0 elements to integer’high elements. Each element
of the BIT VECTOR type is of type BIT.

Unconstrained types are typically used as types of subprogram argu-
ments, or entity ports. These entities or subprograms can be passed items
of any size within the range of the unconstrained type.

For instance, let’s assume that a designer wants a shift-right function for
type BIT vECTOR. The function uses the unconstrained type BIT VECTOR as
the type of its ports, but it can be passed any type that is a subtype of type
BIT VECTOR. Let’s walk through an example to illustrate how this works.
Following is an example of an unconstrained shift-right function:

PACKAGE mypack IS
SUBTYPE eightbit IS BIT VECTOR(0 TO 7);
SUBTYPE fourbit IS BIT VECTOR(0 TO 3);
FUNCTION shift right(val : BIT VECTOR)
RETURN BIT VECTOR;

END mypack;

PACKAGE BODY mypack IS
FUNCTION shift right(val : BIT VECTOR) RETURN BIT VECTOR

Data Types

93

IS VARIABLE result : BIT VECTOR(0 TO (val’LENGTH -1));
BEGIN
result := wval;
IF (val’LENGTH > 1) THEN
FOR i IN 0 TO (val’LENGTH -2) LOOP

result (i) := result(i + 1);
END LOOP;
result (val’LENGTH -1) := 0;
ELSE
result(0) := 0;
END IF;

RETURN result;
END shift right;
END mypack;

The package declaration (the first five lines of the model) declares two
subtypes: eightbit and fourbit. These two subtypes are subtypes of the
unconstrained base type BIT vEcTOR. These two types constrain the base
type to range O to 7 for type eightbit and range O to 3 for type fourbit.

In a typical hardware description language without unconstrained
types, two different shift-right functions would need to be written to han-
dle the two different-sized subtypes. One function would work with type
eightbit, and the other would work with type fourbit. With uncon-
strained types in VHDL, a single function can be written that will handle
both input types and return the correct type.

Based on the size of input argument val, the internal variable result
is created to be of the same size. Variable result is then initialized to
the value of input argument val. This is necessary because the value of
input argument val can only be read in the function; it cannot have a
value assigned to it in the function. If the size of input argument val is
greater than 1, then the shift-right function loops through the length of
the subtype value passed into the function. Each loop shifts one of the bits
of variable result one bit to the right. If the size of input argument val
is less than 2, we treat this as a special case and return a single bit whose
value is *0’.

RECORD TYPES Record types group objects of many types together
as a single object. Each element of the record can be accessed by its field
name. Record elements can include elements of any type, including arrays
and records. The elements of a record can be of the same type or different
types. Like arrays, records are used to model abstract data elements.

Following is an example of a record type declaration:

TYPE optype IS (add, sub, mpy, div, jmp);

94

Chapter Four
TYPE instruction IS
RECORD
opcode : optype;
src : INTEGER;
dst : INTEGER;

END RECORD;

The first line declares the enumerated type optype, which is used as
one of the record field types. The second line starts the declaration of the
record. The record type declaration begins with the keyword RECOrRD and
ends with the clause END RECORD. All of the declarations between these
two keywords are field declarations for the record.

Each field of the record represents a unique storage area that can
be read from and assigned data of the appropriate type. This example
declares three fields: opcode of type optype, and src and dst of type
INTEGER. Each field can be referenced by using the name of the record,
followed by a period and the field name. Following is an example of this
type of access:

PROCESS (X)
VARIABLE inst : instruction;
VARIABLE source, dest : INTEGER;
VARIABLE operator : optype;

BEGIN
source := inst.src; --Ok line 1
dest = inst.src; --Ok line 2
source := inst.opcode; --error line 3
operator := inst.opcode; --Ok line 4
inst.src := dest; --Ok line 5
inst.dst := dest; --Ok line 6
inst := (add, dest, 2); --Ok line 7
inst := (source); --error line 8

END PROCESS;

This example declares variable inst, which is of type instruction. Also,
variables matching the record field types are declared. Lines 1 and 2 show
fields of the record being assigned to local process variables. The assign-
ments are legal because the types match. Notice the period after the name
of the record to select the field.

Line 3 shows an illegal case. The type of field opcode does not match
the type of variable source. The compiler will flag this statement as a type
mismatch error. Line 4 shows the correct assignment occurring between
the field opcode and a variable that matches its type.

Data Types

95

Lines 5 and 6 show that not only can record fields be read from, but
they can be assigned to as well. In these two lines, two of the fields of the
record are assigned the values from variable dest.

Line 7 shows an example of an aggregate assignment. In this line, all of
the fields of the record are being assigned at once. The aggregate assigned
contains three entries: an optype value, an INTEGER variable value, and
an INTEGER value. This is a legal assignment to variable record inst.

Line 8 shows an example of an illegal aggregate value for record inst.
There is only one value present in the aggregate, which is an illegal type
for the record.

In the examples so far, all of the elements of the records have been
scalars. Let’s examine some examples of records that have more complex
field types. A record for a data packet is shown here:

TYPE word IS ARRAY(0 TO 3) OF std logic;
TYPE t word array IS ARRAY(0 TO 15) OF word;
TYPE addr type IS

RECORD
source : INTEGER;
key : INTEGER;

END RECORD;

TYPE data packet IS

RECORD
addr : addr type;
data : t word array;

checksum : INTEGER;
parity : BOOLEAN;
END RECORD;

The first two type declarations define type word and addr type, which
are used in the record data packet. Type word is a simple array and
type addr_type is a simple record. Record type data packet contains
four fields using these two types in combination with two VHDL prede-
fined types.

The following example shows how a variable of type data packet
would be accessed:

PROCESS (X)
VARIABLE packet : data packet;

BEGIN
packet.addr.key := 5; --0Ok line 1
packet.addr := (10, 20); --0Ok line 2

packet.data(0) := (‘0’, ‘0’, *0’, ‘'0'); --Ok line 3

96

Chapter Four
packet.data(10) (4) := ‘1’; --error line 4
packet.data(10) (0) := ‘1’; --Ok line 5

END PROCESS;

This example shows how complex record types are accessed. In line 1,
a record field of a record is accessed. Field key is a record field of record
addr_type, which is a field of record data_packet. This line assigns the
value 5 to that field. Line 2 assigns an aggregate to the whole field called
addr in record data_ packet.

In line 3, the data field is assigned an aggregate for the Oth element
of the array. Line 4 tries to assign to only one bit of the eleventh ele-
ment of the data array field in record data packet, but the second index
value is out of range. Finally, line 5 shows how to assign to a single bit
of the array correctly.

Composite types are very powerful tools for modeling complex and
abstract data types. By using the right combination of records and arrays,
you can make models easy to understand and efficient.

ACCESS TYPES Most hardware design engineers using VHDL
probably never use access types directly (a hardware designer may use
the TextIO package, which uses access types, thereby an indirect use of
access types), but access types provide very powerful programming lan-
guage type operations. An access type in VHDL is very similar to a
pointer in a language like Pascal or C. It is an address, or a handle, to
a specific object.

Access types allow the designer to model objects of a dynamic nature. For
instance, dynamic queues, fifos, and so on can be modeled easily using
access types. Probably the most common operation using an access type
is creating and maintaining a linked list.

Only variables can be declared as access types. By the nature of access
types, they can only be used in sequential processing. Access types are
currently not synthesizable because they are usually used to model the
behavior of dynamically sized structures such as a linked list.

When an object is declared to be of an access type, two predefined functions
are automatically available to manipulate the object. These functions are
named NEw and DEALLOCATE. Function NEw allocates memory of the size of
the object in bytes and returns the access value. Function DEALLOCATE takes
in the access value and returns the memory back to the system. Following
is an example that shows how this all works:

Data Types

97

PROCESS (X)
TYPE fifo element t IS ARRAY(0 TO 3)
OF std logic; --line 1

TYPE fifo_el access IS
ACCESS fifo element t; --line 2

VARIABLE fifo ptr : fifo el access := NULL; --line 3

VARIABLE temp ptr : fifo el access := NULL; --line 4

BEGIN
temp ptr := new fifo element t; --Ok line 5
temp ptr.ALL := (‘0’, ‘1’, ‘0’, ‘1’); --Ok line 6
temp ptr.ALL := (‘0’, ‘0’, ‘0’, ‘'0’); --Ok line 7
temp ptr.ALL(0) := ‘0’; --Ok line 8
fifo ptr := temp ptr; --Ok line 9
fifo ptr.ALL := temp ptr.ALL; --Ok line 10

END PROCESS;

In line 2, an access type is declared using the type declared in line 1.
Lines 3 and 4 declare two access type variables of fifo el access type
from line 2. This process now has two access variable objects that can be
used to access objects of type fifo element t.

Line 5 calls the predefined function NEw, which allocates enough memory
for a variable of type fifo element t and returns an access value to
the memory allocated. The access value returned is then assigned to
variable temp ptr. Variable temp ptr is now pointing to an object of type
fifo element_t.This value can be read from or assigned to using variable
assignment statements.

In line 6, a value is assigned to the object pointed to by temp ptr. Line
7 shows another way to assign a value using an access value. The key-
word .ALL specifies that the entire object is being accessed. Subelements
of the object can be assigned by using a subelement name after the access
variable name. Line 8 shows how to reference a subelement of an array
pointed to by an access value. In this example, the first element of the
array will have a value assigned to it.

In the next few statements, we examine how access values can be
copied among different objects. In line 9, the access value of temp ptr is
assigned to fifo ptr. Now both temp ptr and fifo ptr are pointing to
the same object. This is shown in Figure 4-3.

Both temp ptr and fifo ptr can be used to read from and assign to
the object being accessed.

Line 10 shows how one object value can be assigned to another using
access types. The value of the object pointed to by temp ptr is assigned
to the value pointed to by £ifo ptr.

98 Chapter Four

- fifo_ptr
Figure 4-3 \ Fifo Element

Multiple Access Type

References. /

temp_ptr

Incomplete Types

When implementing recursive structures such as linked lists, you need
another VHDL language feature to complete the declarations. This feature
is called the incomplete type. The incomplete type allows the declaration
of a type to be defined later.

Following is an example that demonstrates why this would be useful:

PACKAGE stack types IS
TYPE data type IS ARRAY(0 TO 7) OF std logic; --line 1

TYPE element rec; --incomplete type line 2
TYPE element ptr IS ACCESS element rec; --line 3
TYPE element rec IS --line 4
RECORD --line 5
data : data_ type; --line 6
nxt : element ptr; --line 7
END RECORD; --line 8
END stack types;
USE WORK.stack types.ALL;
ENTITY stack IS
PORT (din : IN data type;
clk : IN std logic;
dout : OUT data type;
r wb : IN std logic);
END stack;
ARCHITECTURE stack OF stack IS
BEGIN
PROCESS (clk)
VARIABLE list head : element ptr := NULL; --line 9
VARIABLE temp elem : element ptr := NULL; --line 10
VARIABLE last clk : std logic := U; --line 11
BEGIN
IF (clk = '1’) AND (last _clk = ‘0’) THEN --line 12
IF (r wb = ‘0’) THEN --line 13
temp elem := NEW element_rec; --line 14

temp elem.data := din; --line 15

Data Types

99

temp elem.nxt := list head; --line 16
list head := temp elem; --line 17
--read mode line 18
ELSIF (r wb = ‘1’) THEN
dout <= list head.data; --line 19
temp elem := list head; --line 20
list head := temp elem.nxt; --line 21
DEALLOCATE (temp elem); --line 22
ELSE

ASSERT FALSE
REPORT “read/write unknown while clock active”

SEVERITY WARNING; --line 23
END IF;
END IF;
last clk := clk; --line 24

END PROCESS;
END stack;

This example implements a stack using access types. The package
stack types declares all of the types needed for the stack. In line 2, there
is a declaration of the incomplete type element rec.The name of the type
is specified, but no specification of the type is present. The purpose of this
declaration is to reserve the name of the type and allow other types to
gain access to the type when it is fully specified. The full specification for
this incomplete type appears in lines 4 through 8.

The fundamental reason for the incomplete type is to allow self-
referencing structures as linked lists. Notice that type element ptr is
used in type element rec in line 6. To use a type, it must first be de-
fined. Notice also that, in the declaration for type element ptr in line
3, type element rec is used. Because each type uses the other in its re-
spective declarations, neither type can be declared first without a spe-
cial way of handling this case. The incomplete type allows this scenario
to exist.

Lines 4 through 8 declare the record type element rec. This record
type is used to store the data for the stack. The first field of the record is
the data field, and the second is an access type that points to the next
record in the stack.

The entity for stack declares port din for data input to the stack, a c1k
input on which all operations are triggered, a dout port which transfers
data out of the stack, and, finally, a r wb input which causes a read oper-
ation when high and a write operation when low. The process for the stack
is only triggered when the c1k input has an event occur. It is not affected
by changes in r_wb.

Lines 9 through 11 declare some variables used to keep track of the
data for the stack. Variable 1ist head is the head of the linked list of

100

Figure 4-4
Allocate New Stack
Element.

Chapter Four

data. It always points to the first element of the list of items in the stack.
Variable temp elem is used to hold a newly allocated element until it is
connected into the stack list. Variable 1ast_c1k is used to hold the previ-
ous value of c1k to enable transitions on the clock to be detected. (This
behavior can be duplicated with attributes, which are discussed in Chapter
7, “Configurations.”)

Line 12 checks to see if a 0 to 1 transition has occurred on the clk
input. If so, then the stack needs to do a read or write depending on the
r_wb input. Line 13 checks to see if r wb is set up for a write to the stack.
If so, lines 14 through 17 create a new data storage element and connect
this element to the list.

Line 14 uses the predefined function NEw to allocate a record of type
element rec and return an access value to be assigned to variable
temp elem. This creates a structure that is shown in Figure 4-4.

Lines 15 and 16 fill in the newly allocated object with the data from
input din and the access value to the head of the list. After line 16, the
data structures look like Figure 4-5.

Finally, in line 17, the new element is added to the head of the list. This
is shown in Figure 4-6.

Lines 18 through 22 of the model provide the behavior of the stack
when an element is read from the stack. Line 19 copies the data from the
stack element to the output port. Lines 20 through 22 disconnect the
element from the stack list and return the memory to the system.

Line 20 assigns the temp elem access variable to point to the head of
the list. This is shown in Figure 4-7.

Line 21 moves the head of the list to the next element in the list. This
is shown in Figure 4-8.

Stack Element
List_Head >
D
ata Stack Element
NXT >
Data
NXT
Stack Element
Temp_Elem >
Data

NXT

Data Types

Figure 4-5
Point New Element
to Head of List.

Figure 4-6
Point List_ Head to
New Element.

Figure 4-7
Point Temp Elem to
List Head.

List_Head

Stack Element

Temp_Elem ——

List_Head —

Data

NXT

Y

101

Stack Element

Stack Element

Data

NXT

Stack Element

Data

NXT

Stack Element

Y

T~

Temp_Elem ——

List_Head —>
A

Temp_Elem

Stack Element

Data

NXT

Stack Element

Data

NXT

Stack Element

Data

NXT

Stack Element

Data

NXT

Finally, in line 22, the element that had its data transferred out is deal-
located, and the memory is returned to the memory pool. This is shown

in Figure 4-9.

102

Figure 4-8
Move Head Pointer
to Next Element.

Figure 4-9

Deallocate Element.

Chapter Four

List_Head
\ Stack Element
Data Stack Element
Stack Element NXT >
Data

Dat
aa NXT
NXT
Temp_Elem
List_Head
\ Stack Element

Data Stack Element
NXT > —
NXT

Temp_Elem —

Access types are very powerful tools for modeling complex and abstract
types of systems. Access types bring programming language types of
operations to VHDL processes.

File Types

A file type allows declarations of objects that have a type FILE. A file object
type is actually a subset of the variable object type. A variable object can be
assigned with a variable assignment statement, while a file object cannot
be assigned. A file object can be read from, written to, and checked for end
of file only with special procedures and functions.

Files consist of sequential streams of a particular type. A file whose
base object type is INTEGER consists of a sequential stream of integers.
This is shown in Figure 4-10.

A file whose object type is a complex record type consists of a sequential
stream of complex records. An example of how this might look is shown
in Figure 4-11.

At the end of the stream of data is an end-of-file mark. Two procedures
and one function allow operations on file objects:

READ (file, data)Procedure

Data Types

Figure 4-10
Pictorial Representa-
tion of Integer File.

Figure 4-11
Pictorial Representa-

tion of Complex File.

103

WRITE (file, data)Procedure

ENDFILE (file)Function, returns boolean

Procedure READ reads an object from the file and returns the object in
argument data. Procedure WRITE writes argument data to the file specified
by the file argument. Finally, function ENDFILE returns true when the file
is currently at the end-of-file mark.

Using these procedures and functions requires a file type declaration
and a file object declaration.

FILE TYPE DECLARATION A file type declaration specifies the
name of the file type and the base type of the file. Following is an example
of a file type declaration:

TYPE integer file IS FILE OF INTEGER;

This declaration specifies a file type whose name is integer file and
is of type INTEGER. This declaration corresponds to the file in Figure 4-10.

FILE OBJECT DECLARATION A file object makes use of a file type
and declares an object of type FILE. The file object declaration specifies
the name of the file object, the mode of the file, and the physical disk path
name. The file mode can be IN or outT. If the mode is IN, then the file can
be read with the READ procedure. If the mode is ouT, then the file can be
written with the wRITE procedure. Here is an example:

FILE myfile : integer file IS IN
“/doug/test/examples/data file”;

This declaration declares a file object called myfile that is an input file
of type integer file.The last argument is the path name on the physical

Integer 1 Integer2 | Integer N | End of File
OPCODE OPCODE | ceeeeeeeees OPCODE END
ADDRMODE ADDRMODE | oo ADDRMODE OF
SRC SRC SRC FILE
DST DST | e DST MARK

104

Chapter Four

disk where the file is located. (In most implementations this is true, but it
is not necessarily true.)

FILE TYPE EXAMPLES To read the contents of a file, you can call the
READ procedure within a loop statement. The loop statement can perform
read operations until an end of file is reached, at which time the loop is
terminated. Following is an example of a file read operation:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY rom IS
PORT (addr : IN INTEGER;
cs : IN std logic;
data : OUT INTEGER);
END rom;

ARCHITECTURE rom OF rom IS

BEGIN
PROCESS (addr, cs)
VARIABLE rom init : BOOLEAN := FALSE; --line 1
TYPE rom data_file t IS FILE OF INTEGER; --line 2

FILE rom data file : rom data file t IS IN
“/doug/dlp/testl.dat”; --line 3

TYPE dtype IS ARRAY(0 TO 63) OF INTEGER;

VARIABLE rom data : dtype; --line 4
VARIABLE i : INTEGER := 0; --line 5
BEGIN
IF (rom init = false) THEN --line 6
WHILE NOT ENDFILE (rom data file) --line 7
AND (i < 64) LOOP
READ (rom data file, rom data(i)); --line 8
i :=1i + 1; --line 9
END LOOP;
rom init := true; --line 10
END IF;
IF (cs = ‘1’) THEN --line 11
data <= rom data(addr); --line 12
ELSE
data <= -1; --line 13
END IF;
END PROCESS;
END rom;

This example shows how a rom can be initialized from a file the first time
the model is executed and never again. A variable called rom init is used
to keep track of whether the rom has been initialized or not. If false, the rom
has not been initialized; if true, the rom has already been initialized.

Data Types

105

Line 2 of the example declares a file type rom data file t thatisused
to declare a file object. In line 3, a rom data file object is declared. In
this example, the physical disk path name was hard-coded into the model,
but a generic could have been used to pass a different path name for each
instance of the rom.

Line 6 of the example tests variable rom init for true or false. If false,
the initialization loop is executed. Line 7 is the start of the initialization
loop. The loop test makes use of the predefined function ENDFILE. The loop
executes until there is no more data in the file or when the rom storage
area has been filled.

Each pass through the loop calls the predefined procedure REaD. This
procedure reads one integer at a time and places it in the element of
rom data that is currently being accessed. Each time through the loop, the
index i is incremented to the next element position.

Finally, when the loop finishes, the variable rom_init is set to true. The
next time the process is invoked, variable rom init will be true, so the
initialization loop will not be invoked again.

Writing a file is analogous to reading, except that the loop does not test
every time through for an end-of-file condition. Each time a loop writing data
is executed, the new object is appended to the end of the file. When the model
is writing to a file, the file must have been declared with mode our.

File Type Caveats

In general, the file operations allowed are limited. Files cannot be
opened, closed, or accessed in a random sequence. All that VHDL pro-
vides is a simple sequential capability. See Appendix D for a description
of VHDHLI3 file access. For textual input and output, there is another
facility that VHDL provides called TextIO. This facility provides for
formatted textual input and output and is discussed in Chapter 8,
“Advanced Topics.”

Subtypes

Subtype declarations are used to define subsets of a type. The subset can
contain the entire range of the base type but does not necessarily need to.
A typical subtype adds a constraint or constraints to an existing type.

106

Chapter Four

The type integer encompasses the minimum range -2,147,483,647 to
+2,147,483,647. In the Standard package (a designer should never redefine
any of the types used in the Standard package; this can result in incom-
patible VHDL, because of type mismatches), there is a subtype called NaT-
URAL whose range is from 0 to +2,147,483,647. This subtype is defined as
shown here:

TYPE INTEGER IS -2,147,483,647 TO +2,147,483,647;
SUBTYPE NATURAL IS INTEGER RANGE 0 TO +2,147,483,647;

After the keyword suBTYPE is the name of the new subtype being created.
The keyword 1s is followed by the base type of the subtype. In this exam-
ple, the base type is INTEGER. An optional constraint on the base type is
also specified.

So why would a designer want to create a subtype? There are two main
reasons for doing so:

To add constraints for selected signal assignment statements or
case statements.

To create a resolved subtype. (Resolved types are discussed along
with resolution functions in Chapter 5.)

When a subtype of the base type is used, the range of the base type can
be constrained to be what is needed for a particular operation. Any functions
that work with the base type also work with the subtype.

Subtypes and base types also allow assignment between the two types.
A subtype can always be assigned to the base type because the range of
the subtype is always less than or equal to the range of the base type. The
base type may or may not be able to be assigned to the subtype, depending
on the value of the object of the base type. If the value is within the value
of the subtype, then the assignment succeeds; otherwise, a range constraint
error results.

A typical example where a subtype is useful is adding a constraint to
a numeric base type. In the previous example, the NATURAL subtype con-
strained the integer base type to the positive values and zero. But what
if this range is still too large? The constraint specified can be a user-
defined expression that matches the type of the base type. In the following
example, an 8-bit multiplexer is modeled with a much smaller constraint
on the integer type:

PACKAGE mux types IS
SUBTYPE eightval IS INTEGER RANGE 0 TO 7; --line 1
END mux_ types;

Data Types

SUMMARY

107

USE WORK.mux types.ALL;
LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
ENTITY mux8 IS
PORT (IO, I1, I2, I3, I4, I5,
I6, I7: IN std logic;
sel : IN eightval; --line 2
q : OUT std logic);
END mux8;

ARCHITECTURE mux8 OF mux8 IS

BEGIN
WITH sel SELECT --line 3
Q <= I0 AFTER 10 ns WHEN 0, --line 4

I1 AFTER 10 ns WHEN 1, --line 5
I2 AFTER 10 ns WHEN 2, --line 6
I3 AFTER 10 ns WHEN 3, --line 7
I4 AFTER 10 ns WHEN 4, --line 8
I5 AFTER 10 ns WHEN 5, --line 9
I6 AFTER 10 ns WHEN 6, --line 10
I7 AFTER 10 ns WHEN 7; --line 11

END mux8;

The package mux_types declares a subtype eightval, which adds a con-
straint to base type INTEGER. The constraint allows an object of eightval
to take on values from 0 to 7.

The package is included in entity mux8, which has one of its input
ports sel declared using type eightval. In the architecture at line 3, a
selected signal assignment statement uses the value of sel to determine
which output is transferred to the output Q. If sel was not of the sub-
type eightval, but was strictly an integer type, then the selected signal
assignment would need a value to assign for each value of the type, or
an oTHERS clause. By adding the constraint to the integer type, all values
of the type can be directly specified.

In this chapter, we have examined the different types available in VHDL
to the designer. We discussed the following:

How types can be used by three different types of objects: the
signal, variable, and constant.

How signals are the main mechanism for the connection of
entities, and how signals are used to pass information
between entities.

108

Chapter Four

How variables are local to processes and subprograms and are
used mainly as scratch pad areas for local calculations.

How constants name a particular value of a type.

How integers behave like mathematical integers, and real numbers
behave like mathematical real numbers.

How enumerated types can be used to describe user-defined
operations and make a model much more readable.

How physical types represent physical quantities such as distance,
current, time, and so on.

The composite type, arrays and records. Arrays are a group of
elements of the same type, and records are a group of elements of
any type(s).

How access types are like pointers in typical programming
languages.

How file types are linear streams of data of a particular type that
can be read and written from a model.

How subtypes can add constraints to a type.

In the next chapter, we focus on another method of sequential statement
modeling: the subprogram.

CHAPTER

Subprograms and
Packages

In this chapter, subprograms and packages are discussed.
Subprograms consist of procedures and functions used to
perform common operations. Packages are mechanisms
that allow sharing data among entities. Subprograms,
types, and component declarations are the tools to build
designs with, and packages are the toolboxes.

110

Chapter Five

Subprograms

Subprograms consist of procedures and functions. A procedure can return
more than one argument; a function always returns just one. In a function,
all parameters are input parameters; a procedure can have input para-
meters, output parameters, and inout parameters.

There are two versions of procedures and functions: a concurrent pro-
cedure and concurrent function, and a sequential procedure and sequential
function. The concurrent procedure and function exist outside of a process
statement or another subprogram; the sequential function and procedure
exist only in a process statement or another subprogram statement.

All statements inside of a subprogram are sequential. The same state-
ments that exist in a process statement can be used in a subprogram,
including waIT statements.

A procedure exists as a separate statement in an architecture or process;
a function is usually used in an assignment statement or expression.

Function

The following example is a function that takes in an array of the
std logic type (described in Chapter 9, “Synthesis” and Appendix A,
“Standard Logic Package”) and returns an integer value. The integer value
represents the numeric value of all of the bits treated as a binary number:

USE LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
PACKAGE num types IS
TYPE log8 IS ARRAY(0 TO 7) OF std logic; --line 1
END num_ types;

USE LIBRARY IEEE; USE IEEE.std logic 1164.ALL;
USE WORK.num types.ALL;
ENTITY convert IS
PORT (I1 : IN log8; --line 2
Ol : OUT INTEGER) ; --line 3
END convert;

ARCHITECTURE behave OF convert IS

FUNCTION vector to int(S : log8) --line 4
RETURN INTEGER is --line 5
VARIABLE result : INTEGER := 0; --line 6

BEGIN

FOR i IN 0 TO 7 LOOP --line 7

result := result * 2; --line 8

Subprograms and Packages 111

IF S(i) = ‘1’ THEN --line 9
result := result + 1; --line 10
END IF;
END LOOP;
RETURN result; --line 11

END vector to int;

BEGIN
Ol <= vector to int(Il); --line 12
END behave;

Line 1 of the example declares the array type used throughout the
example. Lines 2 and 3 show the input and output ports of the convert
entity and their types. Lines 4 through 11 describe a function that is
declared in the declaration region of the architecture behave. By declaring
the function in the declaration region of the architecture, the function is
visible to any region of the architecture.

Lines 4 and 5 declare the name of the function, the arguments to the
function, and the type that the function returns. In line 6, a variable local
to the function is declared. Functions have declaration regions very similar
to process statements. Variables, constants, and types can be declared, but
no signals.

Lines 7 through 10 declare a loop statement that loops once for each
value in the array type. The basic algorithm of the function is to do a shift
and add for each bit position in the array. The result is first shifted (by
multiplying by 2), and then, if the bit position is a logical 1, a 1 value is
added to the result.

At the end of the loop statement, variable result contains the integer
value of the array passed in. The value of the function is passed back via
the RETURN statement. An example RETURN statement is shown in line 11.

Finally, line 12 shows how a function is called. The name of the function
is followed by its arguments enclosed in parentheses. The function always
returns a value; therefore, the calling process, concurrent statement, and
so on must have a place for the function to return the value to. In this
example, the output of the function is assigned to an output port.

Parameters to a function are always input only. No assignment can be
done to any of the parameters of the function. In the preceding example, the
parameters were of a constant kind because no explicit kind was specified
and the default is constant. The arguments are treated as if they were
constants declared in the declaration area of the function.

The other kind of parameter that a function can have is a signal para-
meter. With a signal parameter, the attributes (which are discussed in
Chapter 6, “Predefined Attributes”) of the signal are passed in and are

112

Chapter Five

available for use in the function. The exception to this statement are

attributes ‘STABLE, ‘QUIET, ‘TRANSACTION, and ‘DELAYED, which create
special signals.

Following is an example showing a function that contains signal para-
meters:

USE LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY dff IS
PORT(d, clk : IN std logic;
q : OUT std logic);

FUNCTION rising edge(SIGNAL S : std logic) --line 1
RETURN BOOLEAN IS --line 2
BEGIN
--this function makes use of attributes
--‘event and ‘last value discussed
--in Chapter 6
IF (S’EVENT) AND (S = ‘1’) AND --line 3
(S'LAST VALUE = ‘0’) THEN --line 4
RETURN TRUE; --line 5
ELSE
RETURN FALSE; --line 6
END IF;
END rising edge;
END dff;
ARCHITECTURE behave OF dff IS
BEGIN
PROCESS (clk)
BEGIN
IF rising edge(clk) THEN --line 7
q <= d; --line 8
END IF;

END PROCESS;
END behave;

This example provides a rising edge detection facility for the D flip-flop
being modeled. The function is declared in the entity declaration section
and is available to any architecture of the entity.

Lines 1 and 2 show the function declaration. There is only one para-
meter (s) to the function, and it is of a signal type. Lines 3 and 4 show an
1F statement that determines whether the signal has just changed or not,
if the current value is a ‘1, and whether the previous value was a *0-.
If all of these conditions are true, then the 1F statement returns a true
value, signifying that a rising edge was found on the signal.

If any one of the conditions is not true, the value returned is false, as
shown in line 6. Line 7 shows an invocation of the function using the signal

Subprograms and Packages 113

created by port c1k of entity d££. If there is a rising edge on the signal c1k,
then the d value is transferred to the output q.

The most common use for a function is to return a value in an expres-
sion; however, there are two more classes of use available in VHDL. The
first is a conversion function, and the second is a resolution function. Con-
version functions are used to convert from one type to another. Resolution
functions are used to resolve bus contention on a multiply-driven signal.

Conversion Functions

Conversion functions are used to convert an object of one type to another.
They are used in component instantiation statements to allow mapping
of signals and ports of different types. This type of situation usually arises
when a designer wants to make use of an entity from another design that
uses a different data type.

Assume that designer A was using a data type that had the following
four values:

TYPE fourval IS (X, L, H, Z);

Designer B was using a data type that also contained four values, but
the value identifiers were different, as shown here:

TYPE fourvalue IS (‘X’, ‘0’, ‘1’, ‘Z');

Both of these types can be used to represent the states of a four-state
value system for a VHDL model. If designer A wanted to use a model from
designer B, but designer B used the values from type fourvalue as the
interface ports to the model, then designer A cannot use the model with-
out converting the types of the ports to the value system used by designer
B. This problem can be solved through the use of conversion functions.

First, let’s write the function that converts between these two value
systems. The values from the first type represent these distinct states:

Xx—Unknown value
L—Logical 0 value
H—Logical 1 value

z—High-impedance or open-collector value
The values from the second type represent these states:

'x’ —Unknown value

114

Chapter Five

v0’ —Logical 0 value

‘1 —Logical 1 value

‘z' —High-impedance or open-collector value

From the description of the two value systems, the conversion function
is trivial. Following is an example of one:

FUNCTION convert4val(S : fourval) RETURN fourvalue IS
BEGIN

CASE S IS
WHEN X =>
RETURN ‘X’
WHEN L =>
RETURN ‘0’
WHEN H =>
RETURN ‘1’
WHEN Z =>
RETURN ‘Z’
END CASE;
END convert4val;

~

~e

~e

~.

This function accepts a value of type fourval and returns a value of

type fourvalue. The next example shows where such a function might
be used:

PACKAGE my std IS
TYPE fourval IS (X, L, H, Z);
TYPE fourvalue IS (‘X’, ‘0’, ‘1’, ‘Z');

TYPE fvector4 IS ARRAY(0 TO 3) OF
END my std;

fourval;
USE WORK.my std.ALL;
ENTITY reg IS
PORT(a : IN fvector4;
clr IN fourval;
clk : IN fourval;
g : OUT fvector4);

FUNCTION convert4val(S : fourval)
RETURN fourvalue IS

BEGIN
CASE S Is
WHEN X =>
RETURN ‘X’;
WHEN L =>
RETURN ‘0’;
WHEN H =>

RETURN ‘1’;
WHEN Z =>

Subprograms and Packages 115

RETURN ‘Z’;
END CASE;
END converté4val;

FUNCTION convert4value(S : fourvalue)
RETURN fourval IS
BEGIN
CASE S IS
WHEN ‘X’
RETURN
WHEN ‘0’
RETURN
WHEN ‘1’
RETURN
WHEN ‘Z’
RETURN
END CASE;
END convert4value;
END reg;

V s V o~ V

NI Inh i
V o~

~.

ARCHITECTURE structure OF reg IS
COMPONENT dff
PORT (d, clk, clr : IN fourvalue;
g : OUT fourvalue);
END COMPONENT;
BEGIN
Ul : dff PORT MAP (converté4val(a(0)),
convert4val (clk),
convert4val (clr),
convert4value(q) => q(0));

U2 : dff PORT MAP (convertédval(a(l)),
convert4val (clk),
convert4val (clr),
convert4value(q) => q(l));

U3 : dff PORT MAP (convert4val(a(2)),
convert4val (clk),
convert4val (clr),
convert4value(q) => q(2));

U4 : dff PORT MAP (converté4val(a(3)),
convert4val (clk),
convert4val (clr),
convert4value(q) => q(3));

END structure;

This example is a 4-bit register built out of flip-flops. The type used in
the entity declaration for the register is a vector of type fourval. However,
the flip-flops being instantiated have ports that are of type fourvalue. A
type mismatch error is generated if the ports of entity register are mapped

116

Chapter Five

directly to the component ports. A conversion function is needed to convert
between the two value systems.

If the ports are all of mode 1IN, then only one conversion is needed to map
from the containing entity type to the contained entity type. In this example,
if all of the ports were of mode input, then only function convert4val would
be required.

If the component has output ports as well, then the output values of
the contained entity need to be converted back to the containing entity
type. In this example, the q port of component d£f is an output port. The
type of the output values is fourvalue. These values cannot be mapped
to the type fourval ports of entity xregister. Function convert4value
converts from a fourvalue type to a fourval type. Applying this function
on the output ports allows the port mapping to occur.

There are four component instantiations that use these conversion
functions: components Ul through U4. Notice that the input ports use the
convert4val conversion function; the output ports use the convert4value
conversion function.

Using the named association form of mapping for component instanti-
ation, Ul would look like this:

Ul: 4dff PORT MAP (
d => convert4val(a(0)),
clk => convert4val(clk),
clr => convert4val(clr),
convert4value(q) => gq(0));

What this notation shows is that, for the input ports, the conversion
functions are applied to the appropriate input signals (ports) before being
mapped to the dff ports, and the output port value is converted with the
conversion function before being mapped to the output port q(0).

Conversion functions free the designer from generating a lot of temporary
signals or variables to perform the conversion. The following example
shows another method for performing conversion functions:

templ <= convert4val(a(0));
temp2 <= convert4val(clk);
temp3 <= convert4val(clr);

Ul: dff PORT MAP (
d => templ,
clk => temp2,
clr => temp3,
q => temp4);

g(0) <= convert4value (temp4) ;

Subprograms and Packages 117

This method is much more verbose, requiring an intermediate temporary
signal for each port of the component being mapped. This clearly is not
the preferred method.

If a port is of mode INOUT, conversion functions cannot be used with
positional notation. The ports must use named association because two
conversion functions must be associated with each inout port. One con-
version function is used for the input part of the inout port, and the other
is used for the output part of the inout port.

In the following example, two bidirectional transfer devices are contained
in an entity called trans2:

PACKAGE my pack IS
TYPE nineval IS (z0, Zzl, 2zZX,
RO, R1l, RX,
F0, Fl, FX);

TYPE nvector2 IS ARRAY(0 TO 1) OF nineval;
TYPE fourstate IS (X, L, H, Z);

FUNCTION converté4state(a : fourstate)
RETURN nineval;

FUNCTION convert9val(a : nineval)
RETURN fourstate;

END my pack;

PACKAGE body my pack IS
FUNCTION converté4state(a : fourstate)
RETURN nineval IS
BEGIN
CASE a IS
WHEN X =>
RETURN FX;
WHEN L =>
RETURN FO;
WHEN H =>
RETURN F1;
WHEN Z =>
RETURN ZX;
END CASE;
END converté4state;

FUNCTION convert9val(a : nineval)
RETURN fourstate IS
BEGIN
CASE a IS
WHEN Z0 =>
RETURN 7Z;
WHEN Z1 =>

118

Chapter Five

RETURN Z;
WHEN ZX =>
RETURN Z;
WHEN RO =>
RETURN L;
WHEN R1 =>
RETURN H;
WHEN RX =>
RETURN X;
WHEN FO =>
RETURN L;
WHEN F1 =>
RETURN H;
WHEN FX =>
RETURN X;

END CASE;

END convert9val;
END my pack;

USE WORK.my pack.ALL;
ENTITY trans2 IS
PORT(a, b : INOUT nvector2;
enable : IN nineval);
END trans2;

ARCHITECTURE struct OF trans2 IS
COMPONENT trans
PORT(x1, x2 : INOUT fourstate;
en : IN fourstate);
END COMPONENT;
BEGIN
Ul : trans PORT MAP (
convert4state(xl) => convert9val(a(0)),
converté4state(x2) => convert9val(b(0)),
en => convert9val (enable));

U2 : trans PORT MAP (
converté4state(xl) => convert9val(a(l)),
converté4state (x2) => convert9val(b(l)),
en => convert9val (enable));
END struct;

Each component is a bidirectional transfer device called trans. The
trans device contains three ports. Ports x1 and x2 are inout ports, and
port en is an input port. When port en is an H value, x1 is transferred to
x2; and when port en is an L value, x2 is transferred to x1.

The trans components use type fourstate for the port types; the
containing entity uses type nineval. Conversion functions are required
to allow the instantiation of the trans components in architecture struct
of entity trans2.

Subprograms and Packages 119

The first component instantiation statement for the trans component
labeled u1 shows how conversion functions are used for inout ports. The
first port mapping maps portxl to a(0). Port a(0) is a nineval type;
therefore, the signal created by the port is a nineval type. When this sig-
nal is mapped to port x1 of component trans, it must be converted to a
fourstate type. Conversion function convert9val must be called to com-
plete the conversion. When data is transferred out to port x1 for the out
portion of the inout port, conversion function convert4state must be
called.

The conversion functions are organized such that the side of the port
mapping clause that changes contains the conversion function that must
be called. When x1 changes, function convert4state is called to convert
the fourstate value to a nineval value before it is passed to the con-
taining entity trans2. Conversely, when port a(0) changes, function
convert9val is called to convert the nineval value to a fourstate value
that can be used within the trans model.

Conversion functions are used to convert a value of one type to a value of
another type. They can be called explicitly as part of execution or implicitly
from a mapping in a component instantiation.

Resolution Functions

A resolution function is used to return the value of a signal when the sig-
nal is driven by multiple drivers. It is illegal in VHDL to have a signal with
multiple drivers without a resolution function attached to that signal.

A resolution function consists of a function that is called whenever one of
the drivers for the signal has an event occur on it. The resolution function
is executed and returns a single value from all of the driver values; this
value is the new value of the signal.

In typical simulators, resolution functions are built in, or fixed. With
VHDL, the designer has the ability to define any type of resolution function
desired, wired-or, wired-and, average signal value, and so on.

A resolution function has a single-argument input and returns a single
value. The single-input argument consists of an unconstrained array of
driver values for the signal that the resolution function is attached to. If
the signal has two drivers, the unconstrained array is two elements long;
if the signal has three drivers, the unconstrained array is three elements
long. The resolution function examines the values of all of the drivers and
returns a single value called the resolved value of the signal.

120

Figure 5-1
Four State Truth
Table.

Chapter Five

Let’s examine a resolution function for the type fourval that was used
in the conversion function examples. The type declaration for fourval is
shown here:

TYPE fourval IS (X, L, H, Z);

Four distinct values are declared that represent all of the possible
values that the signal can obtain. The value L represents a logical 0, the
value H represents a logical 1, the value z represents a high-impedance
or open-collector condition, and, finally, the value x represents an unknown
condition in which the value can represent an L or an g, but we’re not sure
which. This condition can occur when two drivers are driving a signal, one
driver driving with an H, and the other driving with an L.

Listed by order of strength, with the weakest at the top, the values are
as follows:

z—Weakest, H, L, or X can override
H,L—Medium strength, only x can override

x—Strong, no override

Using this information, a truth table for two inputs can be developed,
as shown in Figure 5-1.

This truth table is for two input values. It can be expanded to more
inputs by successively applying it to two values at a time. This can be done
because the table is commutative and associative. An L. and a z, or a z and
an L, gives the same results. An (1, z) with u gives the same results as an
(#, z) with an L. These principles are very important, because the order of
driver values within the input argument to the resolution function is non-
deterministic from the designer’s point of view. Any dependence on order
can cause nondeterministic results from the resolution function.

Z L H X
Z Z L H X
L L L X X
H H X H X
X X X X X

Subprograms and Packages 121

Using all of this information, a designer can write a resolution function
for this type. The resolution function maintains the highest strength seen
so far and compares this value with new values a single element at a time,
until all values have been exhausted. This algorithm returns the highest-
strength value.

Following is an example of such a resolution function:

PACKAGE fourpack IS
TYPE fourval IS (X, L, H, Z);
TYPE fourval vector IS ARRAY (natural RANGE <>) OF
fourval;

FUNCTION resolve(s: fourval vector) RETURN fourval;
END fourpack;

PACKAGE BODY fourpack IS
FUNCTION resolve(s: fourval vector) RETURN fourval IS
VARIABLE result : fourval := Z;
BEGIN
FOR i IN s’RANGE LOOP
CASE result IS
WHEN Z =>
CASE s(i) IS
WHEN H =>
result := H;
WHEN L =>
result := L;
WHEN X =>
result := X;
WHEN OTHERS
NULL;
END CASE;

]
\"

WHEN L =>
CASE s(i) IS
WHEN H =>
result := X;
WHEN X =>
result := X;
WHEN OTHERS
NULL;
END CASE;

n
\"

WHEN H =>
CASE s(i) IS
WHEN L =>
result := X;

WHEN X =>
result := X;
WHEN OTHERS

n
\%

122

Figure 5-2
Four State Resolution
with Two Values.

Chapter Five

NULL;
END CASE;

WHEN X =>
result := X;

END CASE;
END LOOP;
RETURN result;

END resolve;
END fourpack;

The input argument is an unconstrained array of the driver-base
type, fourval. The resolution function examines all of the values of the
drivers passed in argument s one at a time and returns a single value
of fourval type to be scheduled as the signal value.

Variable result is initialized to a z value to take care of the case of zero
drivers for the signal. In this case, the loop is never executed, and the
result value returned is the initialization value. It is also a good idea to
initialize the result value to the weakest value of the value system to allow
overwriting by stronger values.

If a nonzero number of drivers exists for the signal being resolved, then
the loop is executed once for each driver value passed in argument s. Each
driver value is compared with the current value stored in variable result.
If the new value is stronger according to the rules outlined earlier, then
the current result is updated with the new value.

Let’s look at some example driver values to see how this works. Assuming
that argument s contained the driver values shown in Figure 5-2, what
would the result be?

Initial
Value Driver Values
Z Z H

7 ~——

H -«—! Resultant Value

Subprograms and Packages 123

Figure 5-3
Four State Resolution
with Three Values.

Because there are two drivers, the loop is executed twice. The first time
through, the loop variable result contains the initial value z. The first
driver value is also a z value. Value z compared with value z produces a
resulting value z.

The next iteration through the loop retrieves the next driver value,
which is H. The value B compared with value z returns value #. The
function therefore returns the value = as the resolved value of the signal.

Another case is shown in Figure 5-3. In this example, there are three
drivers, and the resolution function executes the loop three times. In the
first iteration of the loop, the initial value of result (z) is compared with
the first driver value (#). The value H is assigned to result. In the next
iteration, result (#) is compared with the second driver (z). The value B
remains in result because the value z is weaker. Finally, the last itera-
tion result (#) is compared with the last driver value (). Because these
values are of the same strength, the value x is assigned to result. The
value x is returned from the function as the resolved value for the signal.

NINE-VALUE RESOLUTION FUNCTION Some simulators use
more complex types to represent the value of a signal. For instance, what
might a resolution function look like for a nine-value system, typical of
most workstation-based simulators in use currently? Following are the
nine values in the value system:

Initial
Value Driver Values
Z H 7 L

H €——

H <-——

X -«— ResultantValue

124 Chapter Five

z0, 2z1, ZX, RO, R1l, RX, FO, Fl, FX

weakest----------mmmm e strongest

The system consists of three strengths and three logic values. The three
strengths represent the following:

z—High impedance strength, few hundred k of resistance

R—Resistive, few k of resistance

F—Forcing, few ohms of resistance
The three logic levels are represented as follows:

0—Logical 0 or false
1—Logical 1 or true

x—Logical unknown
The nine states are described as follows:

z0—High-impedance 0

z1—High-impedance 1

zx—High-impedance unknown

R0—Resistive 0

R1—Resistive 1

Rx—Resistive unknown

Fo0—Forcing 0

F1—Forcing 1

Fx—Forcing unknown

A few simple rules can be used to define how the resolution function
should work:
—Strongest strength always wins.
—If strengths are the same and values are different, return same

strength but x value.

Following are the type declarations needed for the value system:

PACKAGE ninepack IS
TYPE strength IS (Z, R, F);
TYPE nineval IS (Z0, zl1l, ZX,
RO, R1, RX,
FO, F1, FX);

TYPE ninevalvec IS ARRAY (natural RANGE <>) OF nineval;

Subprograms and Packages 125
TYPE ninevaltab IS ARRAY (nineval’LOW TO
nineval’HIGH) OF nineval;

TYPE strengthtab IS ARRAY (strength’LOW TO
strength’HIGH) OF nineval;

FUNCTION resolve9(s: ninevalvec) RETURN nineval;

END ninepack;

The package body contains the resolution function (package bodies are
discussed near the end of this chapter).

PACKAGE BODY ninepack IS
FUNCTION resolve9(s: ninevalvec) RETURN nineval IS
VARIABLE result: nineval;
CONSTANT get strength : ninevaltab :=

(z, --20
Z, --Z1
z, --ZX
R, --RO
R, --R1
R, --RX
F, --F0
F, --F1
F); --FX

CONSTANT x tab : strengthtab :=
(zx, --2
RX, --R
FX) ; --F

BEGIN

IF s’LENGTH = 0 THEN RETURN ZX; END IF;

result := s(0);

FOR i IN s’RANGE LOOP
IF get strength(result) < get strength(s(i)) THEN
result := s(i);

ELSIF get strength(result) = get strength(s(i)) THEN
IF result /= s(i) THEN
result := x tab(get_strength(result));
END IF;

END IF;
END LOOP;
RETURN result;

END resolve9;
END ninepack;

The package ninepack declares a number of types used in this example,
including some array types to make the resolution function easier to

126

Figure 5-4
Nine State Resolution
with Two Values.

Chapter Five

implement. The basic algorithm of the function is the same as the fourval
resolution function; however, the operations with nine values are a little
more complex. Function resolve9 still does a pairwise comparison of the
input values to determine the resultant value. With a nine-value system,
the comparison operation is more complicated, and therefore some constant
arrays were declared to make the job easier.

The constant get strength returns the driving strength of the driver
value. The constant x_tab returns the appropriate unknown nine-state
value, given the strength of the input. These constants could have been
implemented as IF statements or case statements, but constant arrays
are much more efficient.

In the nine-value system, there are three values at the lowest strength
level, so the variable result has to be initialized more carefully to predict
correct results. If there are no drivers, the range attribute of argument s
returns 0, and the default value (zx) is returned.

Let’s look at a few examples of driver-input arguments and see what
the resolution function predicts. An example of two drivers is shown in
Figure 5-4.

This example contains two driver values, z1 and Ro. Variable result is
initialized to the first driver value, and the loop executes as many times
as there are drivers. The first time through the loop, result equals z1 and
the first driver equals z1. Variable result remains at z1 because the
values are equal. The next time through the loop, variable result con-
tains z1, and the second driver contains rR0. The constant get strength
returns strength r. The constant get_strength for variable result returns
strength z. Strength R is lexically greater than strength z. This is because
value R has a higher position number than z, because R is listed after z
in the type declaration for type strength. The fact that the new driver has

Initial
Value Driver Values
71 Z1| RO

7] €———

RO <«— Resultant Value

Subprograms and Packages 127

Figure 5-5
Nine State Resolution
with Three Values.

a stronger strength value than variable result causes variable result to
be updated with the stronger value, ro.

Another example shows how the constant x_tab is used to predict the
correct value for conflicting inputs. The driver values are shown in the
array in Figure 5-5.

In this example, variable result is initialized to Fo. The first iteration
of the loop does nothing because the first driver and the result-
initialization value are the same value. The next iteration starts with
variable result containing the value Fo, and the next driver value as Rro.
Because the value in variable result is greater in strength than the value
of the new driver, no action is implemented, except to advance the loop to
the next driver.

The last driver contains the value F1. The strength of the value contained
in variable result and the new driver value are the same. Therefore, the
1F statement checking this condition is executed and succeeds. The next
IF statement checks to see if the logical values are the same for both vari-
able result and the new driver. Variable result contains an Fo, and the
new driver value contains an F1. The values are not the same, and the
x_tab table is used to return the correct unknown value for the strength
of the driver values. The x_tab table returns the value Fx, which is returned
as the resolved value.

A more efficient method to implement the loop would be to skip the
first iteration where the first driver is compared to itself, because the
value in variable result is initialized to the first driver value. It is left
as an exercise to the reader to write this new loop iteration mechanism.

Initial
Value Driver Values
FoO FO | RO | F1

FO<€——

FO -—

LP FX <« Resultant Value

128

Chapter Five

Although VHDL simulators can support any type of resolution that can
be legally written in the language, synthesis tools can only support a
subset. The reason stems from the fact that the synthesis tools must build
actual hardware from the VHDL description. If the Resolution Function
maps into a common hardware behavior such as wired-or or wired-and,
then most synthesis tools allow the user the ability to tag the resolution
function appropriately. For instance, a Resolution Function that performs
a wired-or function is tagged with an attribute that tells the synthesis
tools to connect the outputs together.

COMPOSITE TYPE RESOLUTION For simple signal values such as
the nineval and fourval types, it is easy to see how to create the resolu-
tion function. But for signals of composite types, it is not so obvious. How
can one value of a composite type be stronger than another?

The answer is that one value must be designated as weaker than all of
the other values. Then the principle is the same as any other type being
resolved. In the fourval type, the value z was considered the weakest
state, and any of the other values could overwrite this value. In the
nineval type, all values with a strength of z could be overridden by val-
ues with a strength of R or F, and all values with strength r could be over-
ridden by strength F.

To resolve a composite type, designate one value of the composite type
as unusable except to indicate that the signal is not currently being driven.
The resolution function checks how many drivers have this value and how
many drivers have a driving value. If only one driving value exists, then
the resolution function can return this value as the resolved value. If more
than one driving value is present, then an error condition probably exists
and the resolution function can announce the error.

A typical application for a composite type resolution function is shown
in Figure 5-6.

Signal xBUS can be driven from a number of sources, but hopefully only
one at a time. The resolution function must determine how many drivers
are trying to drive xBUs and return the correct value for the signal.

Following is the type declarations and resolution function for a com-
posite type used in such a circuit:

PACKAGE composite res IS
TYPE xtype IS
RECORD
addr : INTEGER;
data : INTEGER;

Subprograms and Packages 129

MEMORY
Figure 5-6
Block Diagram of
Computer. CPU
XBUS
IO_PORT

DISK_CONTROL

END RECORD;

TYPE xtypevector IS ARRAY(natural RANGE <>) OF xtype;
CONSTANT notdriven : xtype := (-1,-1);

FUNCTION cresolve(t : xtypevector) RETURN xtype;
END composite res;

PACKAGE BODY composite res IS
FUNCTION cresolve(t : xtypevector) RETURN xtype IS
VARIABLE result : xtype := notdriven;
VARIABLE drive count : INTEGER := 0;
BEGIN
IF t’LENGTH = 0 THEN RETURN notdriven;
END IF;

FOR i IN t’RANGE LOOP
IF t(i) /= notdriven THEN
drive count := drive count + 1;
IF drive count = 1 THEN
result := t(i);
ELSE
result := notdriven;
ASSERT FALSE
REPORT “multiple drivers detected”
SEVERITY ERROR;
END IF;
END IF;
END LOOP;
RETURN result;

130

Chapter Five

END cresolve;
END composite res;

Type xtype declares the record type for signal xbus. Type xtypevector
is an unconstrained array type of xtype values used for the resolution
function input argument t. Constant notdriven declares the value of the
record that is used to signify that a signal driver is not driving. Negative
number values were used to represent the notdriven state because, in this
example, only positive values are used in the addr and data fields. But
what happens if all of the values must be used for a particular type? The
easiest solution is probably to declare a new type which is a record, con-
taining the original type as one field of the record, and a new field which
is a boolean that determines whether the driver is driving or not driving.

In this example, resolution function cresolve first checks to make certain
that at least one driver value is passed in argument t (drivers can be turned
off using guarded signal assignment). If at least one driver is driving, the
loop statement loops through all driver values, looking for driving values.
If a driving value is detected, and it is the first, then this value is assumed
to be the output resolved value, until proven otherwise. If only one driving
value occurs, that value is returned as the resolved value.

If a second driving value appears, the output is set to the nondriven
value, signifying that the outcome is uncertain, and the AsserT statement
writes out an error message to that effect.

In this example, the negative numbers of the integer type were not
used except to indicate whether the signal was driving or not. We reserved
one value to indicate this condition. Another value could be reserved to
indicate the multiple-driven case such that when multiple drivers are
detected on the signal, this value would be returned as the resolved value.
An example might look like this:

CONSTANT multiple drive : xtype := (-2,-2);

This constant provides the capability of distinguishing between a non-
driven signal and a multiple-driven signal.

RESOLVED SIGNALS So far we have discussed how to write resolu-
tion functions that can resolve signals of multiple drivers, but we have not
discussed how all of the appropriate declarations are structured to ac-
complish this.

Resolved signals are created using one of two methods. The first is
to create a resolved subtype and declare a signal using this type. The
second is to declare a signal specifying a resolution function as part of
the signal declaration.

Subprograms and Packages 131

Let’s discuss the resolved subtype method first. To create a resolved sub-
type, the designer declares the base type, then declares the subtype speci-
fying the resolution function to use for this type. An example looks like this:

TYPE fourval IS (X, L, H, Z); -- won’t compile
SUBTYPE resfour IS resolve fourval; -- as is

The first declaration declares the enumerated type fourval. The second
declaration is used to declare a subtype named resfour, which uses a
resolution function named resolve to resolve the base type fourval. This
syntax does not compile as is because the function resolve is not visible.
To declare a resolved subtype requires a very specific combination of
statements, in a very specific ordering.

Following is a correct example of the resolved type:

PACKAGE fourpack IS

TYPE fourval IS (X, L, H, Z); -- line 1
TYPE fourvalvector IS ARRAY (natural RANGE <>)
OF fourval; -- line 2

FUNCTION resolve(s: fourvalvector) RETURN fourval;
-- line 3

SUBTYPE resfour IS resolve fourval; -- line 4
END fourpack;

The statement in line 2 declares an unconstrained array of the base
type that is used to contain the driver values passed to the resolution
function. The statement in line 3 declares the definition of the resolution
function resolve so that the subtype declaration can make use of it. The
body of the resolution function is implemented in the package body. Finally,
the statement in line 4 declares the resolved subtype using the base type
and the resolution function declaration.

The order of the statements is important, because each statement
declares something that is used in the next statement. If the uncon-
strained array declaration is left out, the resolution function could not be
declared, and if the resolution function was not declared, the subtype
could not be declared.

The second method of obtaining a resolved signal is to specify the reso-
lution function in the signal declaration. In the following example, a signal
is declared using the resolution function resolve:

PACKAGE fourpack IS
TYPE fourval IS (X, L, H, Z);

132

Chapter Five

TYPE fourvalvector IS ARRAY (natural RANGE <>) OF fourval;

FUNCTION resolve(s: fourvalvector) RETURN fourval;
SUBTYPE resfour IS resolve fourval;
END fourpack;

USE WORK. fourpack.ALL;
ENTITY mux2 IS
PORT(il, i2, a : IN fourval;
g : OUT fourval);
END mux2;

ARCHITECTURE different OF mux2 IS
COMPONENT and2
PORT(a, b : IN fourval;
c : OUT fourval);
END COMPONENT;

COMPONENT inv
PORT(a : IN fourval;
b : OUT fourval);

END COMPONENT;

SIGNAL nota : fourval;

-- resolved signal
SIGNAL intg : resolve fourval := X;

BEGIN
Ul: inv PORT MAP(a, nota);
U2: and2 PORT MAP(il, a, intq);
U3: and2 PORT MAP(i2, nota, intq):;
g <= intqg;

END different;

The package fourpack declares all of the appropriate types and function
declarations so that the resolution function resolve is visible in the entity.
In the architecture declaration section, signal intq is declared of type
fourval, using the resolution function resolve. This signal is also given
an initial value of x.

Signal intq is required to have a resolution function because it is the
output signal for components uv2 and u3. Each component provides a driver
to signal intq. Resolution function resolve is used to determine the end
result of the two driver values. Signal nota is not required to have a reso-
lution function because it only has one driver, component vU1.

Subprograms and Packages 133

Procedures

In the earlier section describing functions, we discussed how functions can
have a number of input parameters and always return one value. In con-
trast, procedures can have any number of in, out, and inout parameters. A
procedure call is considered a statement of its own; a function usually ex-
ists as part of an expression. The most usual case of using a procedure is
when more than one value is returned.

Procedures have basically the same syntax and rules as functions. A
procedure declaration begins with the keyword PROCEDURE, followed by
the procedure name, and then an argument list. The main difference be-
tween a function and a procedure is that the procedure argument list
most likely has a direction associated with each parameter; the function
argument list does not. In a procedure, some of the arguments can be mode
IN, OUT, or INOUT; in a function, all arguments are of mode 1IN by default
and can only be of mode IN.

A typical example where a procedure is very useful is during the con-
version from an array of a multivalued type to an integer. A procedure
showing an example of how to accomplish this is shown here:

USE LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;

PROCEDURE vector to_int (z : IN std logic_vector;
x flag : OUT BOOLEAN; q : INOUT INTEGER) IS

BEGIN
q := 0;
x flag := false;

FOR i IN z’RANGE LOOP
q :=q * 2;

IF z(i) = ‘1’ THEN
qg :=qg + 1;
ELSIF z(i) /= FO0 THEN
x flag := TRUE;
END IF;
END LOOP;
END vector to int;

The behavior of this procedure is to convert the input argument z from
an array of a type to an integer. However, if the input array has unknown
values contained in it, an integer value cannot be generated from the ar-
ray. When this condition occurs, output argument x_flag is set to true,
indicating that the output integer value is unknown. A procedure was
required to implement this behavior because more than one output value

134

Chapter Five

results from the procedure. Let’s examine what the result from the pro-
cedure is from the input array value shown here:

0’ 0’ A A

The first step for the procedure is to initialize the output values to
known conditions, in case a zero length input argument is passed in.
Output argument x_flag is initialized to false and stays false until
proven otherwise.

The loop statement loops through the input vector z and progressively
adds each value of the vector until all values have been added. If the value
is a ‘17, then it is added to the result. If the value is a *0’, then no addi-
tion is done. If any other value is found in the vector, the x_flag result is
set true, indicating that an unknown condition was found on one of the
inputs. (Notice that parameter q is defined as an inout parameter. This is
needed because the value is read in the procedure.)

PROCEDURE WITH INOUT PARAMETERS The examples we have
discussed so far have dealt mostly with in and out parameters, but proce-
dures can have inout parameters also. The next example shows a procedure
that has an inout argument that is a record type. The record contains an
array of eight integers, along with a field used to hold the average of
all of the integers. The procedure calculates the average of the integer
values, writes the average in the average field of the record, and returns
the updated record:

PACKAGE intpack IS
TYPE bus_stat_vec IS ARRAY(0 to 7) OF INTEGER;
TYPE bus stat t IS
RECORD
bus val: bus stat vec;
average val : INTEGER;
END RECORD;

PROCEDURE bus average(x : inout bus stat t);
END intpack;

PACKAGE BODY intpack IS
PROCEDURE bus average(x : inout bus stat t) IS

VARIABLE total : INTEGER := O0;
BEGIN
FOR i IN 0 TO 7 LOOP
total := total + x.bus val(i);
END LOOP;

x.average val := total / 8;

Subprograms and Packages 135

END bus average;
END intpack;

A process calling the procedure might look as shown below:

PROCESS (mem update)
VARIABLE bus statistics : bus stat t;
BEGIN
bus statistics.bus val :=
(50, 40, 30, 35, 45, 55, 65, 85);

bus average (bus_ statistics);
average <= bus_statistics.average val;

END PROCESS;

The variable assignment to bus_statistics.bus val fills in the appro-
priate bus utilization values to be used for the calculation. The next line is the
call to the bus_average procedure, which performs the averaging calculation.
Initially, the argument to the bus_average procedure is an input value, but
after the procedure has finished, the argument becomes an output value that
can be used inside the calling process. The output value from the procedure
is assigned to an output signal in the last line of the process.

SIDE EFFECTS Procedures have an interesting problem that is not
shared by their function counterparts. Procedures can cause side effects to
occur. A side effect is the result of changing the value of an object inside a
procedure when that object was not an argument to the procedure. For in-
stance, a signal of an architecture can be assigned a value from within a
procedure, without that signal being an argument passed into the proce-
dure. For instance, if two signals are not declared in the argument list of
a procedure, but are assigned from within a procedure called from the
current procedure, any assignments to these signals are side effects.

This is not a recommended method for writing a model. The debugging
and maintenance of a model of this type can be very difficult. This feature
was presented so the reader would understand the behavior if such a
model were examined.

Packages

The primary purpose of a package is to encapsulate elements that can be
shared (globally) among two or more design units. A package is a common
storage area used to hold data to be shared among a number of entities.

136

Chapter Five

Declaring data inside of a package allows the data to be referenced by
other entities; thus, the data can be shared.

A package consists of two parts: a package declaration section and a
package body. The package declaration defines the interface for the package,
much the same way that the entity defines the interface for a model. The
package body specifies the actual behavior of the package in the same
method that the architecture statement does for a model.

Package Declaration

The package declaration section can contain the following declarations:

Subprogram declaration

Type, subtype declaration

Constant, deferred constant declaration
Signal declaration creates a global signal
File declaration

Alias declaration

Component declaration

Attribute declaration, a user-defined attribute (Chapter 8,
“Advanced Topics”)

Attribute specification
Disconnection specification

Use clause

All of the items declared in the package declaration section are visible
to any design unit that uses the package with a sk clause. The interface to
a package consists of any subprograms or deferred constants declared in
the package declaration. The subprogram and deferred constant declara-
tions must have a corresponding subprogram body and deferred constant
value in the package body or an error results.

Deferred Constants

Deferred constants are constants that have their name and type declared
in the package declaration section but have the actual value specified in
the package body section. Following is an example of a deferred constant
in the package declaration:

Subprograms and Packages 137

PACKAGE tpack IS
CONSTANT timing mode : t_mode;
END tpack;

This example shows a deferred constant called timing mode being
defined as type t_mode. The actual value of the constant is specified when
the package body for package tpack is compiled. This feature allows late
binding of the value of a constant so that the value of the constant can be
specified at the last possible moment and can be changed easily. Any design
unit that uses a deferred constant from the package declaration need not
be recompiled if the value of the constant is changed in the package body.
Only the package body needs to be recompiled.

Subprogram Declaration

The other item that forms the interface to the package is the subprogram
declaration. A subprogram declaration allows the designer to specify the
interface to a subprogram separately from the subprogram body. This
functionality allows any designers using the subprogram to start or continue
with the design, while the specification of the internals of the subprograms
are detailed. It also gives the designer of the subprogram bodies freedom
to change the internal workings of the subprograms, without affecting any
designs that use the subprograms. Following is an example of a subpro-
gram declaration:

PACKAGE cluspack IS
TYPE nineval IS (z0, zl, ZzZX,
RO, R1l, RX,
FO, Fl, FX);
TYPE t cluster IS ARRAY(0 to 15) OF nineval;
TYPE t clus vec IS ARRAY(natural range <>) OF t cluster;

FUNCTION resolve cluster(s: t clus vec)
RETURN t cluster;

SUBTYPE t_wclus IS resolve cluster t_ cluster;
CONSTANT undriven : t wclus;

END cluspack;

The subprogram declaration for resolve cluster specifies the name
of the subprogram, any arguments to the subprogram, their types and
modes, and the return type if the subprogram is a function. This declara-
tion can be used to compile any models that intend to use it, without the

138 Chapter Five

actual subprogram body specified yet. The subprogram body must exist
before the simulator is built, during elaboration.

Package Body

The main purpose of the package body is to define the values for deferred
constants and specify the subprogram bodies for any subprogram decla-
rations from the package declaration. However, the package body can also
contain the following declarations:

Subprogram declaration
Subprogram body
Type, subtype declaration

Constant declaration, which fills in the value for the deferred con-
stant

File declaration
Alias declaration

Use clause

All of the declarations in the package body, except for the constant
declaration that is specifying the value of a deferred constant and the sub-
program body declaration, are local to the package body.

Let’s examine a package body for the package declaration that was
discussed in the last section:

PACKAGE BODY cluspack IS
CONSTANT undriven : t wclus :=
(ZX, ZX, ZX, ZX,
ZX, ZX, ZX, ZX,
ZX, 22X, ZX, ZX,
ZX, 2ZX, ZX, ZX);

FUNCTION resolve cluster (s: t clus vec)
return t cluster IS
VARIABLE result : t cluster;
VARIABLE drive count : INTEGER;
BEGIN
IF s’LENGTH = 0 THEN RETURN undriven;
END IF;
FOR i in s’RANGE LOOP
IF s(i) /= undriven THEN
drive count := drive count + 1;
IF drive count = 1 THEN

Subprograms and Packages 139

result := s(i);
ELSE
result := undriven;

ASSERT FALSE
REPORT “multiple drivers detected”
SEVERITY ERROR;
END IF;
END IF;
END LOOP;
RETURN result;
END resolve cluster;
END cluspack;

The package body statement is very similar to the package declaration,
except for the keyword BopY after package. The contents of the two design
units are very different, however. This package body example contains
only two items: the deferred constant value for deferred constant undriven
and the subprogram body for subprogram resolve cluster. Notice how
the deferred constant value specification matches the deferred constant
declaration in the package declaration, and the subprogram body matches
the subprogram declaration in the package declaration. The subprogram
body must match the subprogram declaration exactly in the number of
parameters, the type of parameters, and the return type.

A package body can also contain local declarations that are used only
within the package body to create other subprogram bodies, or deferred
constant values. These declarations are not visible outside of the package
body but can be very useful within the package body. Following is an
example of a complete package making use of this feature:

USE LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
PACKAGE math IS
TYPE stl6é IS ARRAY(0 TO 15) OF std logic;

FUNCTION add(a, b: IN stl6) RETURN stl6;
FUNCTION sub(a, b: IN stl6) RETURN stl6;

END math;
PACKAGE BODY math IS
FUNCTION vect_to_int(S : stl6é) RETURN INTEGER IS
VARIABLE result : INTEGER := 0;
BEGIN
FOR i IN 0 TO 7 LOOP

result := result * 2;

IF s(i) = ‘1’ THEN

140 Chapter Five

result := result + 1;

RETURN result;
END vect to int;

FUNCTION int_to_sth(s : INTEGER) RETURN stlé6 IS
VARIABLE result : stlé6;

VARIABLE digit : INTEGER := 2**15;
VARIABLE local : INTEGER;

BEGIN
local : = s;

FOR i IN 15 DOWNTO 0 LOOP
IF local/digit >>= 1 THEN
result(i) := ‘1’;
local := local - digit;
ELSE
result(i) := ‘0’;
END IF;

digit := digit/2;

END LOOP;

RETURN result;
END int to stl6;

FUNCTION add(a, b: IN stl6) RETURN stlé IS
VARIABLE result : INTEGER;

BEGIN
result := vect to int(a) + vect to int(b);
RETURN int to_stlé (result);

END add;

FUNCTION sub(a, b: IN stl6) RETURN stlé IS
VARIABLE result : INTEGER;

BEGIN
result := vect to int(a) - vect to int(b);
RETURN int to stl6(result);
END sub;
END math;

The package declaration declares a type st16 and two functions, add
and sub, that work with this type. The package body has function bodies
for function declarations add and sub and also includes two functions that
are only used in the package body. These functions are int_to_st16 and
vect_to_int. These functions are not visible outside of the package body.
To make these functions visible, a function declaration would need to be
added to the package declaration, for each function.

Subprograms and Packages 141

SUMMARY

Functions vect to int and int to st1é must be declared ahead of
function add to compile correctly. All functions must be declared before
they are used to compile correctly.

In this chapter, we discussed the different kinds of subprograms and some
of the uses for them. Specifically, we covered the following:

How subprograms consist of functions and procedures. Functions
have only input parameters and a single return value; procedures
can have any number of in, out, and inout parameters.

How functions can be used as conversion functions to convert from
one type to another.

How functions can be used as resolution functions to calculate the
proper value on a multiple-driven network.

How procedures are considered statements; functions are usually
part of an expression. Procedures can exist alone; functions are
usually called as part of a statement.

How packages are used to encapsulate information that is to be
shared among multiple design units.

How packages consist of a package declaration in which all of the
type, subprogram, and other declarations exist and a package body
in which subprogram bodies and deferred constants exist.

In the next chapter, we discuss how attributes can make some de-
scriptions easier to read and more compact.

This page intentionally left blank.

CHAPTER

Predetfined
Attributes

This chapter discusses VHDL predefined attributes and
the way that concise readable models can be written
using attributes. Predefined attributes are data that can
be obtained from blocks, signals, and types or subtypes.
The data obtained falls into one of the following categories
shown:

% Value kind—A simple value is returned.

I Function kind—A function call is performed to return
a value.

[0 Signal kind—A new signal is created whose value is
derived from another signal.

[Type kind—A type mark is returned.

I Range kind—A range value is returned.

144

Chapter Six

Predefined attributes have a number of very important applications.
Attributes can be used to detect clock edges, perform timing checks in
concert with ASSERT statements, return range information about uncon-
strained types, and much more. All of these applications are examined in
this chapter. First, we discuss each of the predefined attribute kinds and
the ways that these attributes can be applied to modeling.

Value Kind Attributes

Value attributes are used to return a particular value about an array of a
type, a block, or a type in general. Value attributes can be used to return
the length of an array or the lowest bound of a type. Value attributes can
be further broken down into three subclasses:

Value type attributes, which return the bounds of a type

Value array attributes, which return the length of an array

Value block attributes, which return block information

Value Type Attributes

Value type attributes are used to return the bounds of a type. For instance,
a type defined as shown in the following would have a low bound of 0 and
a high bound of 7:

TYPE state IS (0 TO 7);
There are four predefined attributes in the value type attribute category:

T’ LEFT, which returns the left bound of a type or subtype
T’ RIGHT, which returns the right bound of a type or subtype
T’ HIGH, which returns the upper bound of a type or subtype

T’ LOW, which returns the lower bound of a type or subtype

Attributes are specified by the character * and then the attribute name.
The object preceding the ’ is the object that the attribute is attached to.
The capital T in the preceding descriptions means that the object that the
attribute is attached to is a type. The * character is pronounced “tick”
among VHDL hackers. Therefore, the first attribute in the preceding list
is specified “T tick left.”

Predefined Attributes 145

The left bound of a type or subtype is the leftmost entry of the range
constraint. The right bound is the rightmost entry of the type or subtype.
In the following example, the left bound is -32,767, and the right bound
is 32,767:

TYPE smallint IS -32767 TO 32767;

The upper bound of a type or subtype is the bound with the largest
value, and the lower bound is the bound with the lowest value. In the pre-
ceding example, for the type smallint, the upper bound is 32,767, and the
lower bound is -32,767.

To use one of these value attributes, the type mark name is followed
by the attribute desired. For example, following is the syntax to return the
left bound of a type:

PROCESS (x)
SUBTYPE smallreal IS REAL RANGE -1.0E6 TO 1.0E6;
VARIABLE q : real;
BEGIN
q := smallreal’LEFT;
-- use of ’'left returns
-- -1.0E6
END test;

In this example, variable q is assigned the left bound of type smallreal.
Variable g must have the same type as the bounds of the type for the
assignment to occur. (The assignment could also occur if variable q was cast
into the appropriate type.) After the assignment has occurred, variable g
contains -1.0E6, which is the left bound of type smallreal.

In the next example, all of the attributes are used to show what happens
when a DOWNTO range is used for a type:

PROCESS (a)
TYPE bit range IS ARRAY (31 DOWNTO 0) OF BIT;
VARIABLE left range, right range, uprange, lowrange :
integer;
BEGIN
left range := bit range’LEFT;
-- returns 31

right range := bit range’RIGHT;
-- returns 0

uprange := bit range’HIGH;
-- returns 31

lowrange := bit range’LOW;

146

Chapter Six

-- returns 0
END PROCESS;

This example shows how the different attributes can be used to return
information about a type. When ranges of a type are defined using (a TO
b) where b > a, the ' LEFT attribute will always equal the ' Low attribute;
but when a range specification using (b DOWNTO a) where b > a is used,
the HIeH and ‘' Low can be used to determine the upper and lower bounds
of the type.

Value type attributes are not restricted to numeric types. These attributes
can also be used with any scalar type. Following is an example using
enumerated types:

ARCHITECTURE b OF a IS
TYPE color IS (blue, cyan, green, yellow, red, magenta);
SUBTYPE reverse color IS color RANGE red DOWNTO green;
SIGNAL colorl, color2, color3,
color4, color5, colors,

color7, color8 : color;
BEGIN
colorl <= color’LEFT; -- returns blue
color2 <= color’RIGHT; -- returns magenta
color3 <= color’HIGH; -- returns magenta
color4 <= color’LOW; -- returns blue

color5 <= reverse color’LEFT;
-- returns red

color6 <= reverse color’RIGHT;
-- returns green

color7 <= reverse color’HIGH;
-- returns red

color8 <= reverse color’LOW;
-- returns green
END b;

This example illustrates how value type attributes can be used with
enumerated types to return information about the type. Signals colori
and color2 are assigned blue and magenta, respectively, the left and right
bounds of the type. It is easy to see how these values are obtained by
examining the declaration of the type. The left bound of the type is blue
and the right bound is magenta. What is returned for the 'HIGH and ' Low
attributes of an enumerated type? The answer relates to the position
numbers of the type. For an integer and real type, the position numbers

Predefined Attributes 147

of a value are equal to the value itself; but for an enumerated type, the
position numbers of a value are determined by the declaration of the type.
Values declared earlier have lower position numbers than values declared
later. Value blue from the preceding example has a position number of 0,
because it is the first value of the type. Value cyan has a position number
1, green has 2, and so on. From these position numbers, the high and low
bounds of the type can be found.

Signals color5 through colors are assigned attributes of the type
reverse color. This type has a powNTo range specification. Attributes
'HIGH and ’RIGHT do not return the same value because the range is
reversed. Value red has a higher position number than value green, and
therefore a DowNTO is needed for the range specification.

Value Array Attributes

There is only one value array attribute: ' LENGTH. Given an array type, this
attribute returns the total length of the array range specified. This
attribute works with array ranges of any scalar type and with multi-
dimensional arrays of scalar-type ranges. Following is a simple example:

PROCESS (a)

TYPE bit4 IS ARRAY(0 TO 3) of BIT;

TYPE bit_strange IS ARRAY (10 TO 20) OF BIT;
VARIABLE lenl, len2 : INTEGER;

BEGIN
lenl := bit4’LENGTH; -- returns 4
len2 := bit strange’LENGTH; -- returns 11

END PROCESS;

The assignment to lenl assigns the value of the number of elements
in array type bit4. The assignment to 1en2 assigns the value of the num-
ber of elements of type bit_ strange.

This attribute also works with enumerated-type ranges, as shown by
the following example:

PACKAGE p 4val IS
TYPE t 4val IS ('x’, '0’, '1l’, 'z');
TYPE t 4valXl IS ARRAY(t 4val’LOW TO t 4val’HIGH) OF
t 4val;

TYPE t 4valX2 IS ARRAY(t 4val’LOW TO t 4val’HIGH) OF
t_4valXl;

TYPE t_4valmd IS ARRAY(t_4val’/LOW TO t_4val’HIGH,
t_4val’LOW TO t 4val’HIGH) OF t_4val;

148 Chapter Six

CONSTANT andsd : t 4valX2 :=

(('x’, -- XX

‘o, -- x0

'x’, -- x1 (Notice this is an
'x"), -- Xz array of arrays.)
(ror, -- 0x

ro’, -- 00

ro’, -- 01

r0’), -- 0z

('x’, -- 1x

ro’, -- 10

rir, -- 11

x"), -- 1z

('x’, -- zZx

'o’, -- z0

'x’, -- zl

'x")); -- zz

CONSTANT andmd : t 4valmd :=

((rx’, -- XX
ro’, -- x0
'x’, -- x1
'x’), -- Xz (Notice this example
(ro’, -- 0x is a multidimensional
ro’, -- 00 array.)
ro’, -- 01
r0"), -- 0z
('x’, -- 1x
ro’, -- 10
r1’, -- 11
'x"), -- 1z
('x’, -- zx
ro’, -- z0
'x’, -- zl
'x")); -- zz

END p 4val;

The two composite type constants, andsd and andmd, provide a lookup
table for an aND function of type t_4val. The first constant andsd uses an
array of array values, while the second constant andmd uses a multi-
dimensional array to store the values. The initialization of both constants
is specified by the same syntax. If the ' LENGTH attribute is applied to these
types as shown in the following, the results shown in the VHDL comments
are obtained:

PROCESS (a)

VARIABLE lenl, len2, len3, len4 : INTEGER;
BEGIN

lenl : t 4valX1l’'LENGTH; -- returns 4
len2 := t 4valX2’'LENGTH; -- returns 4

Predefined Attributes 149

len3 t_4valmd’LENGTH(1l); -- returns 4
len4 := t 4valmd’LENGTH(2); -- returns 4
END PROCESS;

Type t_4valxi is a four-element array of type t_4val. The range of
the array is specified using the predefined attributes ‘' L.ow and ’ HIGH of the
t_4val type. Assigning the length of type t 4valxl to lenl returns
the value 4, the number of elements in array type t_4valxi. The assign-
ment to len2 also returns the value 4, because the range of type t_valx2
is from ‘Low to 'HIGH of element type t 4valxi.

The assignments to len3 and len4 make use of a multidimensional
array type t_4valmd. Because a multidimensional array has more than
one range, an argument is used to specify a particular range. The range
defaults to the first range, if none is specified. In the type t 4valmd
example, the designer can pick the first or second range, because there
are only two to choose from. To pick a range, the argument passed to the
attribute specifies the number of the range starting at 1. An argument
value of 1 picks the first range, an argument value of 2 picks the second
range, and so on.

The assignment to 1en3 in the previous example passed in the value 1
to pick the first range. The first range is from t 4val’nowto t 4val’HIGH,
or four entries. The second range is exactly the same as the first; there-
fore, both assignments return 4 as the length of the array.

If the argument to * LENGTH is not specified, it defaults to 1. This was the
case in the first examples of *LENGTH, when no argument was specified.
There was only one range, so the correct range was selected.

Value Block Attributes

There are two attributes that form the set of attributes that work with
blocks and architectures. Attributes * STRUCTURE and ’BEHAVIOR return
information about how a block in a design is modeled. Attribute ' BEHAVIOR
returns true if the block specified by the block label, or architecture
specified by the architecture name, contains no component instantiation
statements. Attribute ’ STRUCTURE returns true if the block or architec-
ture contains only component instantiation statements and/or passive
processes.

The following two examples illustrate how these attributes work. The
first example contains only structural VHDL:

150

Chapter Six

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
ENTITY shifter IS
PORT(clk, left : IN std logic;
right : OUT std logic);
END shifter;

ARCHITECTURE structural OF shifter IS
COMPONENT dff
PORT(d, clk : IN std logic;
q : OUT std logic);
END COMPONENT;

SIGNAL il, i2, i3: std logic;
BEGIN

ul: dff PORT MAP(d => left, clk => clk, q => il);
u2: dff PORT MAP(d => il, clk => clk, q => i2);
u3d: dff PORT MAP(d => i2, clk => clk, g => i3);
u4: dff PORT MAP(d => i3, clk => clk, g => right);

checktime: PROCESS (clk)
VARIABLE last time : time := time’left;
BEGIN
ASSERT (NOW - last time = 20 ns)
REPORT “spike on clock”
SEVERITY WARNING;
last time := now;
END PROCESS checktime;
END structural;

The preceding example is a shift register modeled using four df£ com-
ponents connected in series. A passive process statement exists in the
architecture for entity shifter, used to detect spikes on the clk input.
The following example shows the results of the attributes for the archi-
tecture structural:

structural’BEHAVIOR: returns false

structural’STRUCTURE: returns true

The passive process checktime has no effect on the fact that the
architecture is structural. If the process contained signal assignment
statements, then the process would no longer be considered passive, and
attribute ' sTRUCTURE would also return false.

Predefined Attributes 151

For any block or architecture that does not contain any component
instantiation statements, attribute ’BEHAVIOR is true, and attribute
' STRUCTURE 1is false. For blocks or architectures that mix structure and
behavior, both attributes return false.

Function Kind Attributes

Function attributes return information to the designer about types,
arrays, and signals. When a function kind attribute is used in an expres-
sion, a function call occurs that uses the value of the input argument to
return a value. The value returned can be a position number of an enu-
merated value, an indication of whether a signal has changed this delta,
or one of the bounds of an array.

Function attributes can be subdivided into three general classifications:

Function type attributes, which return type values
Function array attributes, which return array bounds

Function signal attributes, which return signal history information

Function Type Attributes

Function type attributes return particular information about a type.
Given the position number of a value within a type, the value can be
returned. Also values to the left or right of an input value of a particular
type can be returned.

Function type attributes are one of the following:

' oS (value), which returns position number of value passed in
'vaL (value), which returns value from position number passed in
r succ (value), which returns next value in type after input value

' PRED (value), which returns previous value in type before input
value

' LEFTOF (value), which returns value immediately to the left of the
input value

'RIGHTOF (value), which returns value immediately to the right of
the input value

152

Chapter Six

A typical use of a function type attribute is to convert from an enu-
merated or physical type to an integer type. Following is an example of
conversion from a physical type to an integer type:

PACKAGE ohms_law IS
TYPE current IS RANGE 0 TO 1000000

UNITS
ua; -- micro amps
ma = 1000 ua; -- milli amps
a = 1000 ma; -- amps
END UNITS;

TYPE voltage IS RANGE 0 TO 1000000

UNITS

uv; -- micro volts
mv = 1000 uv; -- milli volts
v = 1000 mv; -- volts
END UNITS;

TYPE resistance IS RANGE 0 TO 100000000

UNITS
ohm; -- ohms
Kohm = 1000 ohm; -- kilo ohms
Mohm = 1000 Kohm;-- mega ohms
END UNITS;

END ohms law;

use work.ohms law.all;
ENTITY calc_resistance IS
PORT(i : IN current; e : IN voltage;
r : OUT resistance);
END calc resistance;

ARCHITECTURE behave OF calc resistance IS

BEGIN
ohm proc: PROCESS(i, e)
VARIABLE convi, conve, int r : integer;
BEGIN
convi := current’POS(i); -- current in ua
conve := voltage’POS(e); -- voltage in uv

-- resistance in ohms
int r := conve / convi;

r <= resistance’VAL(int r);

-- another way to write this example
-- is shown below

-- r <=resistance’VAL(current’POS (i)
-- / voltage’POS(e));

Predefined Attributes 153

END PROCESS;
END behave;

Package ohms law declares three physical types used in this example.
Types current, voltage, and resistance are used to show how physical
types can be converted to type INTEGER and back to a physical type.

Whenever ports i or e have an event occur on them, process ohm proc
is invoked and calculates a new value of resistance (r) from the current (i)
and the voltage (e). Variables conve, convi, and int_r were not necessary
in this example but were added for ease of understanding. The commented-
out assignment to output r shows an example where the internal variables
are not needed.

The first statement of the process assigns the position number of the
input value to variable convi. If the input value is 10 ua, then 10 is
assigned to variable convi.

The second statement assigns the position number of the value of
input e to variable conve. The base unit of type voltage is uv (microvolts);
therefore, the position number of any voltage value is determined based
on how many uv the input value is equal to.

The last line in the process converts the resistance value calculated
from the previous line to the appropriate ohms value in type resistance.
The ’vaL attribute is used to convert a position number to a physical type
value of type resistance.

The preceding example illustrates how ’pPos and ’vaL work, but not
' SUCC, ' PRED, ‘' RIGHTOF, and ’ LEFTOF. Following is a very simple example
using these attributes:

PACKAGE p color IS
TYPE color IS (red, yellow, green, blue, purple,
orange) ;

SUBTYPE reverse_color is color RANGE orange downto red ;

END p color;

Assuming the preceding types, the following results are obtained:

color’ succ (blue) returns purple.
color’PRED (green) returns yellow.
reverse color’succ (blue) returns green.

reverse color’PRED (green) returns blue.

154

Chapter Six

color’RIGHTOF (blue) returns purple.
color’ LEFTOF (green) returns yellow.
reverse color’RIGHTOF (blue) returns green.

reverse color’LEFTOF (green) returns blue

For ascending ranges, the following is true:

8UCC(x) = ’'RIGHTOF (x);
'PRED (x) = ’'LEFTOF (x);

For descending ranges, the opposite is true:

'SUCC(x) = ’'LEFTOF (x);
'PRED (x) = ’'RIGHTOF (x);

What happens if the value passed to ’succ, * PRED, and so on is at the
limit of the type? For instance, for type color, what is the value of the
expression shown below:

red;

y :
X color’/PRED(y) ;

The second expression causes a runtime error to be reported, because
a range constraint has been violated.

Function Array Attributes

Function array attributes return the bounds of array types. An operation
that requires accessing every location of an array can use these attributes
to find the bounds of the array.
The four kinds of function array attributes are:
array’LEFT (n), which returns the left bound of index range n
array’RIGHT (n), which returns the right bound of index range n
array’HIGH (n), which returns the upper bound of index range n
array’LOW (n), which returns the lower bound of index range n
These attributes are exactly like the value type attributes that were

discussed earlier, except that these attributes work with arrays.
For ascending ranges, the following is true:

array’LEFT = array’LOW
array’RIGHT = array’HIGH

Predefined Attributes

For descending ranges, the opposite is true:

array’LEFT = array’HIGH
array’RIGHT = array’LOW

155

Following is an example where these attributes are very useful:

PACKAGE p ram IS

TYPE t ram data IS ARRAY(0 TO 511) OF INTEGER;

CONSTANT x val
CONSTANT z_ val

INTEGER
INTEGER

END p ram;

USE WORK.p ram.ALL;
LIBRARY IEEE; USE IEEE.std logic 1164.ALL;
ENTITY ram IS

PORT(data in : IN INTEGER;
addr : IN INTEGER;
data : OUT INTEGER;
cs : IN std logic;

r wb: in std logic);

END ram;

ARCHITECTURE behave ram OF ram IS
BEGIN

main proc: PROCESS(cs, addr, r wb)

VARIABLE ram data : t_ram data;
VARIABLE ram init : boolean := false;
BEGIN
IF NOT(ram init) THEN
FOR i IN ram data’LOW TO ram data’HIGH
ram data(i) := 0;
END LOOP;

ram init := TRUE;
END IF;

IF (¢cs = 'X’) OR (r_wb = ’X’)THEN
data <= x val;

ELSIF (¢cs = ‘0’) THEN
data <=z val;

ELSIF (r wb = ’1’) THEN

LOOP

IF (addr = x val) OR (addr = z val) THEN

data <=x val;
ELSE

data <= ram data(addr);
END IF;

ELSE

156

Chapter Six

IF (addr = x val) OR (addr = z val) THEN
ASSERT FALSE
REPORT “ writing to unknown address”
SEVERITY ERROR;
data <= x_val;

ELSE
ram data(addr) :=data in;
data <= ram data(addr);
END IF;
END IF;

END PROCESS;
END behave ram;

This example implements an integer-based RAM device. There are
512 integer locations in the RAM, which is controlled by two control
lines. The first is es (chip select), and the second is r_wb (read/write bar).
The model contains an IF statement that initializes the contents of the
RAM to a known value. A boolean variable (ram init) is declared to
keep track of whether the RAM has been initialized or not. If this vari-
able is false, the RAM has not yet been initialized. If true, initialization
has been performed.

The first time the process is executed, variable ram init is false, and
the 1IF statement is executed. Inside the IF statement is a loop statement
that loops through every location of the RAM and sets the location to a
known value. This process is necessary because the starting value of type
INTEGER is the value integer’LEFT, or -2,147,483,647. Notice the use of
function array attributes ’Low and ’HIGH to control the range of the initial-
ization loop.

After the loop has been executed and all RAM locations have been
initialized, the ram init variable is set to true. Setting the variable
ram init to true prevents the initialization loop from executing again.

The rest of the model implements the read and write functions based
on the values of addr, data_in, r wb, and cs. This model performs a lot of
error checking for unknown values on input ports. The model tries to intel-
ligently handle these unknown input values.

Function Signal Attributes

Function signal attributes are used to return information about the behav-ior
of signals. These attributes can be used to report whether a signal
has just changed value, how much time has passed since the last event

Predefined Attributes 157

transition, or what the previous value of the signal was. There are five attri-
butes that fall into this category. Following is a brief description of each:

S’ EVENT, which returns true if an event occurred during the cur-
rent delta; otherwise, returns false

S’ACTIVE, which returns true if a transaction occurred during the
current delta; otherwise, returns false

S’LAST EVENT, which returns time elapsed since the previous
event transition of signal

S’LAST VALUE, which returns previous value of s before the last
event

S’LAST_ ACTIVE, which returns time elapsed since the previous
transaction of signal

Attributes 'EVENT and ‘LAST VALUE

Attribute EVENT is very useful for determining clock edges. By checking
if a signal is at a particular value, and if the signal has just changed, it
can be deduced that an edge has occurred on the signal. Following is an
example of a rising edge detector:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY dff IS
PORT(d, clk : IN std logic;
g : OUT std logic);
END dff;

ARCHITECTURE dff OF dff IS
BEGIN
PROCESS (clk)
BEGIN
IF (clk = ’1’) AND (clk’EVENT) THEN
q <= d;
END IF;
END PROCESS;
END dff;

This example shows a very simple d££f model. The c1k input is used to
transfer the 4 input to the q output, on a rising edge of the c1k. To detect
the rising edge of the clk input, this model makes use of the ’EVENT
attribute. If the value of the c1k input is a 17, and the value has just

158

Chapter Six

changed, then a rising edge must have occurred. (When a synthesis tool
is applied to the preceding example, a flip-flop results.)

What the preceding example ignores is the fact that an *x’ value to a
r1+ value also looks like a rising edge when it is not. The next example
shows how to correct this problem using the ’LasT vaLug attribute. The
IF statement from the preceding example is rewritten here:

IF (clk = 1’) AND (clk’EVENT)

and (clk’LAST VALUE = ’0’) THEN
q <= d;
END IF;

In this example, one more check is made to make certain that the last
value of the c1k input was a ’ 0’ before the new event occurred.

In both examples, the * EVENT attribute was not really needed, because
the process statement had only clk as its sensitivity list. The only way
that the process statement could be executed would be because of an
event on signal clk. This is a true statement, but it is a good modeling
practice to check for the event anyway. Some time in the future, the model
may be modified to include an asynchronous preset or clear, and these
signals will be added to the sensitivity list for the process statement. Now,
when an event occurs on any of the inputs, the process is invoked. Using
the ' EVENT attribute, the process can determine which input caused the
process to be invoked.

Attribute 'LAST EVENT

Attribute ' LAST EVENT returns the time since the previous event occurred
on the signal. This attribute is very useful for implementing timing
checks, such as setup checks, hold checks, and pulse width checks. An
example of a setup time and a hold time are shown in Figure 6-1.

The rising edge of signal c1k is the reference edge to which all checks
are performed. A setup time check guarantees that the data input does
not change during the setup time, and the hold time check guarantees
that the data input does not change during the time equal to the hold time
after the reference edge. This ensures correct operation of the device.

Following is an example of the setup time check using the ' LAST EVENT
attribute:

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
ENTITY dff IS

Predefined Attributes 159

Figure 6-1
Setup and Hold Time ; ;
Waveform Descrip- : :

tion. DATA X X

CLK : o

: A :
S . :
q?.t“p . <— -
ime : :
; —_ — Hold
: : Time
Reference
Clock Edge

GENERIC (setup time, hold time : TIME);
PORT(d, clk : IN std logic;
g : OUT std logic);
BEGIN
setup check : PROCESS (clk)
BEGIN
IF (clk = 1") and (clk’EVENT) THEN
ASSERT (d’LAST EVENT >= setup time)
REPORT “setup violation”
SEVERITY ERROR;
END IF;
END PROCESS setup check;
END dff;

ARCHITECTURE dff behave OF dff IS

BEGIN

dff process : PROCESS (clk)

BEGIN
IF (clk = 1") AND (clk’EVENT) THEN
q <= d;
END IF;

END PROCESS dff process;

END dff behave;

The setup_check procedure is contained in a passive process in the entity
for the a££ model. The check could have been included in the architecture
for the dff model, but having the check in the entity allows the timing
check to be shared among any architecture of the entity.

160

Chapter Six

The passive process executes for each event on signal c1k. When the
clk input has a rising edge, the ASSERT statement is executed and per-
forms the check for a setup violation.

The asserT statement checks to see that input d has not had an event
during the setup time passed in by the generic setup time. Attribute
d’LAST EVENT returns the time since the most recent event on signal d. If
the time returned is less than the setup time, the assertion fails and
reports a violation.

Attribute 'acTIVE and ’'LAST ACTIVE

Attributes ' AcTIVE and ' LAST ACTIVE trigger on transactions of the signal
attached to AND events. A transaction on a signal occurs when a model
in or inout port has an event occur that triggers the execution of the
model. The model is executed, but the result of the execution produces
the same output values. For instance, if an AND gate has a 1 value on
one input and a 70’ on the other, the output value is 7 0’. If the input
with a 17 value changes to a ' 0/ value, the output remains * 0/; no event
is generated, but a transaction will have been generated on the output of
the AND gate.

Attribute ' AcTIVE returns true when a transaction or event occurs on
a signal, and attribute 'LAST AcCTIVE returns the time since a previous
transaction or event occurred on the signal it is attached to. Both of these
attributes are counterparts for attributes ' EVENT and ' LAST EVENT, which
provide the same behavior for events.

Signal Kind Attributes

Signal kind attributes are used to create special signals, based on other sig-
nals. These special signals return information to the designer about the
signal that the attribute is attached to. The information returned is very
similar to some of the functionality provided by some of the function
attributes. The difference is that these special signals can be used any-
where that a normal signal can be used, including sensitivity lists.

Signal attributes return information such as whether a signal has been
stable for a specified amount of time, when a transaction has occurred on
a signal, and a delayed version of the signal can be created.

Predefined Attributes 161

One restriction on the use of these attributes is that they cannot be
used within a subprogram. A compiler error message results if a signal
kind attribute is used within a subprogram.

There are four attributes in the signal kind category:

s’DELAYED [(time)], which creates a signal of the same type as
the reference signal that follows the reference signal, delayed by
the time of the optional time expression

s’STABLE [(time)], which creates a boolean signal that is true
whenever the reference signal has had no events for the time
specified by the optional time expression

s’QUIET [(time)], which creates a boolean signal that is true
whenever the reference signal has had no transactions or events
for the time specified by the optional time expression

s’ TRANSACTION, which creates a signal of type BIT that toggles its
value for every transaction or event that occurs on s

Attribute 'DELAYED

Attribute ' DELAYED creates a delayed version of the signal that it is attached
to. The same functionality can be obtained using a transport-delayed sig-
nal assignment. The difference between a transport-delay assignment and
the 'DELAYED attribute is that the designer has to do more bookkeeping
with the transport signal assignment method. With a transport signal as-
signment, a new signal must be declared.

Let’s look at one use for the ' DELAYED attribute. One method for mod-
eling ASIC devices is to place path-related delays on the input pins of the
ASIC library part. An example of this method is shown in Figure 6-2.

Typically, before the layout process, educated guesses are made for the
delays of each input. After layout, the real delay values are back-annotated
to the model, and the simulation is run again with the real delays. One
method to provide for back annotation of the delay values is to use generic
values specified in the configuration for the device. (Configurations are dis-
cussed in Chapter 7, “Configurations.”) A typical model for one of the and2
gates shown in Figure 6-2 might look like this:

LIBRARY IEEE;

USE IEEE.std logic 1164.ALL;

ENTITY and2 IS

GENERIC (a_ipd, b ipd, c opd : TIME);

162

Figure 6-2

Gate Array Logic
with Input and Out-
put Delays.

Chapter Six

] c_opd
— a_ipd
— N c_opd
| I | —
{:—_/ —
b_ipd and2
a_ipd
o copd.
| I | /
b_ipd and2
a_ipd
1 c_opd
I 1
| I | /
b_ipd and2

PORT (a, b : IN std logic;
c: OUT std logic);
END and2;

ARCHITECTURE int signals OF and2 IS
SIGNAL inta, intb : std logic;
BEGIN
inta <= TRANSPORT a AFTER a_ ipd;
intb <= TRANSPORT b AFTER b _ipd;

c <= inta AND intb AFTER c_opd;
END int_signals;

ARCHITECTURE attr OF and2 IS

BEGIN

¢ <= a’DELAYED(a_ipd) AND b’DELAYED(b_ipd) AFTER c_opd;
END attr;

In the preceding example, two architectures for entity and2 show two
different methods of delaying the input signals by the path delay. The first
method uses transport-delayed internal signals to delay the input signals.
These delayed signals are then anped together and assigned to output
port c.

The second method makes use of the predefined signal attribute
' DELAYED. Input signals a and b are delayed by the path delay generic value
a_ipd (a input path delay) and b_ipd (b input path delay). The values of
the delayed signals are anped together and assigned to output port c.

Predefined Attributes 163

If the optional time expression for attribute ‘DELAYED is not specified,
0 ns is assumed. A signal delayed by 0 ns is delayed by one delta. (Delta
delay is discussed in Chapter 2.)

Another application for the ' DELAYED attribute is to perform a hold-check.
Earlier in this chapter, we discussed what setup and hold times were and
how to implement the setup check using 'LasT EVENT. Implementing the
hold-check requires the use of a delayed version of the c1k signal. The
example shown earlier has been modified to include the hold-check function
as shown here:

LIBRARY IEEE;
USE IEEE.std logic_1164.ALL;
ENTITY dff IS
GENERIC (setup time, hold time : TIME);
PORT(d, clk : IN std logic;
g : OUT std logic);
BEGIN
setup check : PROCESS (clk)
BEGIN
IF (clk = 1") and (clk’EVENT) THEN
ASSERT (d’'LAST EVENT >= setup time)
REPORT “setup violation”
SEVERITY ERROR;
END IF;
END PROCESS setup check;

hold _check : PROCESS (clk’DELAYED (hold_ time))
BEGIN
IF (clk’DELAYED (hold time) = ‘1’) and
(clk’DELAYED (hold time)’EVENT) THEN

ASSERT (d’LAST EVENT = 0 ns) OR (d’LAST EVENT >
hold time)
REPORT “hold violation”
SEVERITY ERROR;

END IF;
END PROCESS hold check;
END dff;

ARCHITECTURE dff behave OF dff IS
BEGIN
dff process : PROCESS (clk)
BEGIN
IF (clk = 1") AND (clk’EVENT) THEN
q <= d;
END IF;

END PROCESS dff process;
END dff behave;

164

Chapter Six

A delayed version of the c1k input is used to trigger the hold-check. The
clk input is delayed by the amount of the hold-check. If the data input
changes within the hold time, d’ LAST EVENT returns a value that is less
than the hold time. When 4 changes exactly at the same time as the
delayed clk input, d’ LasT EVENT returns O ns. This is a special case and
is legal so it must be handled specially.

An alternative method for checking the hold time of a device is to trigger
the hold-check process when the d input changes and then look back at the
last change on the c1k input. However, this is more complicated and
requires the designer to manually keep track of the last reference edge
on the clk input.

Another interesting feature of attributes that this model pointed out is
the cascading of attributes. In the preceding example, the delayed version
of the c1k signal was checked for an event. This necessitated the use of
clk’DELAYED (hold time) ’EVENT. The return value from this attribute
is true whenever the signal created by the 'DELAYED attribute has an
event during the current delta time point. In general, attributes can be
cascaded any level if the values returned from the previous attribute are
appropriate for the next attribute.

Attribute ' sTABLE

Attribute ‘sTABLE is used to determine the relative activity level of a
signal. It can be used to determine if the signal just changed or has not
changed in a specified period of time. The resulting value output is itself
a signal that can be used to trigger other processes.

Following is an example of how attribute ’ sTABLE works:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY pulse gen IS
PORT(a : IN std logic;
b : OUT BOOLEAN) ;
END pulse gen;

ARCHITECTURE pulse gen OF pulse gen IS
BEGIN

b <= a’STABLE(10 ns);

END pulse gen;

Figure 6-3 shows the resulting waveform b when waveform a is pre-
sented to the model.

Predefined Attributes 165

Figure 6-3
Example Showing
'DELAYED (10ns).

B

At the first two changes in signal a (10 ns and 30 ns), signal b imme-
diately changes to false (actually at the next delta). Then when signal a
has been stable for 10 ns, signal b changes to true. At time 55 ns, signal
a changes value again, so signal b changes to false. Because signal a
changes 5 ns later (60 ns), signal a has not been stable long enough to
allow output b to go to a true value. Only at 10 ns after the last change
on signal a (60 ns) is the input signal a stable long enough to allow signal
b to change to true.

If the time value specified for the ’ sSTABLE attribute is 0 ns, or not spec-
ified, then the ' sTaBLE attribute is false for 1 delta whenever the signal
that the attribute is attached to changes. An example of this scenario is
shown in Figure 6-4.

When used in this method, the resulting signal value has the same
timing