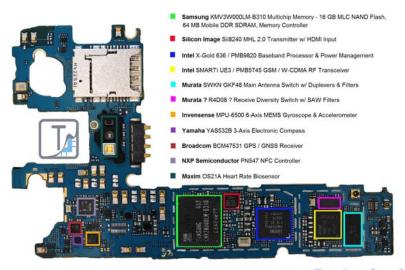
SE 1 : Systèmes électroniques Electronique analogique linéaire et non linéaire


Valentin Gies

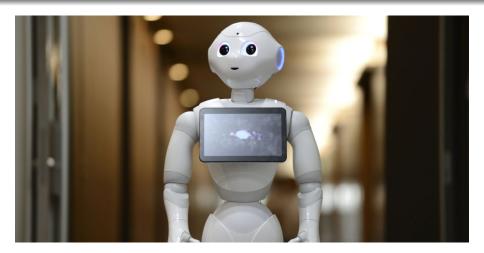
IUT de Toulon - département GEII Université de Toulon (UTLN) Electronique linéaire en représentation temporelle Electronique linéaire en représentation fréquentielle Electronique non linéaire

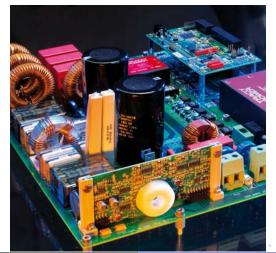
Électronique et électrotechnique

Domaines d'applications et métiers

Domaines d'application : électronique grand public

Domaines d'application : électronique grand public




fig: Pepper (Aldebaran Robotics)

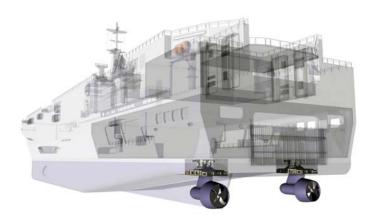
Domaines d'application : électronique grand public

Enjeux:

- Intégration multi-sensor et multi-processeurs. Systèmes distribués.
- Low power.
- Communications radio.
- Mécatronique : fusion entre électronique et mécanique

Domaines d'application : électronique de puissance - conversion d'énergie

Domaines d'application : électronique de puissance - production d'énergie


Domaines d'application : électronique de puissance - production d'énergie

Domaines d'application : électronique de puissance - production d'énergie

Domaines d'application : électronique de puissance - propulsion



Domaines d'application : électronique de puissance

Enjeux:

- Courants, tensions et puissances élevés.
- Conversion d'énergie : optimisation du couple, réduction des pertes...
- Gestion de consommation et production distribuée : supervision, commande à distance...
- Limitation des perturbations électromagnétiques : normalisation...

Domaines d'application : électronique médicale

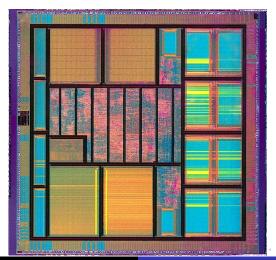
Domaines d'application : électronique médicale

Domaines d'application : Électronique médicale

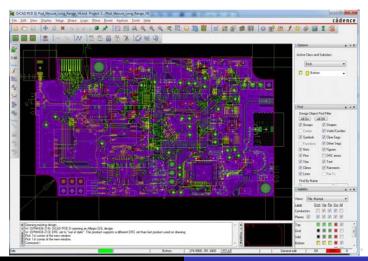
Enjeux:

- Objets connectés : ultra intégré, low power, contrôle et communication distants...
- Robotique : intégration mécanique et électronique...
- Absence de risque pour la santé : fiabilité, normalisation...

Domaines d'application : électronique spatiale



Domaines d'application : électronique spatiale


Enjeux:

- Robustesse : température, vibrations, radiations...
- Récupération et gestion de l'énergie.
- Communication radio longue distance et téléopérabilité.

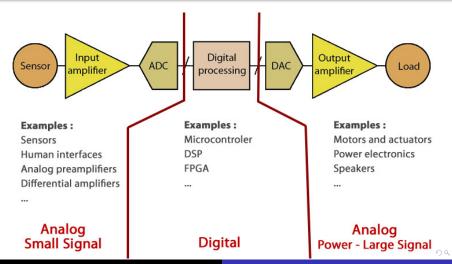
Métiers de l'électronique : conception de circuits silicium

Métiers de l'électronique : conception de systèmes électroniques

Métiers de l'électronique : informatique industrielle

Métiers de l'électronique : ingénierie de recherche

Métiers de l'électronique : assemblage - pick and place



Métiers de l'électronique : assemblage électronique - en Chine

Schéma classique d'un système interfacé avec le monde réel

Electronique

Bases de l'électroniques analogiques

Contenu du cours

- Electronique linéaire en représentation temporelle :
 - Composants élémentaires de l'électronique
 - Amplificateur opérationnel en régime linéaire.
- Electronique linéaire en représentation fréquentielle :
 - Représentation fréquentielle
 - Filtres du premier ordre.
- Electronique non linéaire :
 - Comparateurs et triggers à hystérésis

Objectifs du cours

Objectifs:

- Connaître les composants élémentaires de l'électronique.
- Connaitre leurs applications dans les fonctions de base.

Compétences minimales :

- Mettre en oeuvre des fonctions électroniques de base et en valider le fonctionnement.
- Savoir exploiter un document constructeur et prendre en compte les caractéristiques d'un composant réel et ses limitations.

Plan du Chapitre introductif

- Electronique linéaire en représentation temporelle
 - Les composants élémentaires de l'électronique
 - Amplificateur opérationnel en régime linéaire
- Electronique linéaire en représentation fréquentielle
 - Représentation fréquentielle
 - Filtrage du premier ordre
- Electronique non linéaire
 - Amplificateur opérationnel en régime saturé
 - Comparateurs et triggers
 - Générateur de signaux carrés et triangulaires

Plan

- Electronique linéaire en représentation temporelle
 - Les composants élémentaires de l'électronique
 - Amplificateur opérationnel en régime linéaire
- Electronique linéaire en représentation fréquentielle
 - Représentation fréquentielle
 - Filtrage du premier ordre
- 3 Electronique non linéaire
 - Amplificateur opérationnel en régime saturé
 - Comparateurs et triggers
 - Générateur de signaux carrés et triangulaires

Les conventions en électronique

Les conventions sont à connaître par coeur!

fig: Convention Récepteur

fig: Convention Générateur

Composants élémentaires de l'électronique

Le tableau suivant récapitule pour les 3 composants de base, les expressions des relations temporelles courant-tension en convention récepteur et convention générateur :

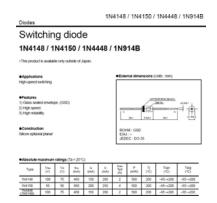
Composant	Relation U-I (Convention récepteur)	Relation U-I (Convention générateur)		
Résistance	U = RI	U = -RI		
Condensateur	$i = \frac{dq}{dt} = C\frac{d(u_C)}{dt}$	$i = -C\frac{d(u_C)}{dt}$		
Inductance	$u_L = L \frac{di}{dt}$	$u_L = -L \frac{di}{dt}$		

Les composants : des milliers de choix possibles

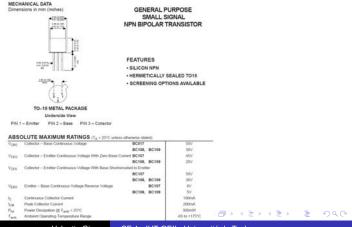
- Critères de choix :
 - Performances et limitations
 - Coût
 - Disponibilité
- Outils pour choisir :
 - Sites internet de vente de composants : choix très vaste (Digikey, Farnell, Radiospares, ...)
 - Documentations techniques (datasheet): indispensable et disponible sur les sites

Exemple : documentation technique d'un amplificateur opérationnel

TL084 TL084A - TL084B


GENERAL PURPOSE J-FET QUAD OPERATIONAL AMPLIFIERS

- WIDE COMMON-MODE (UP TO V_{CC}⁺) AND DIFFERENTIAL VOLTAGE RANGE
- LOW INPUT BIAS AND OFFSET CURRENT
- OUTPUT SHORT-CIRCUIT PROTECTION
- HIGH INPUT IMPEDANCE J-FET INPUT STAGE
- INTERNAL FREQUENCY COMPENSATION
- LATCH UP FREE OPERATION
- HIGH SLEW RATE: 16V/µs (typ)



Exemple: documentation technique d'une diode

Exemple: documentation technique d'un transistor bipolaire:

Limitations des composants (1)

Valeurs maximales admissibles :

• **Tension** : V_{max} (ex. V_{max} supportée par une diode)

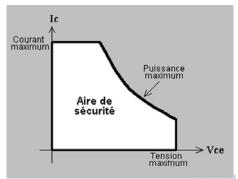
FORWARD VOLTAGE LIMITS - ALL TYPES

	V F1	V F2	V F3	V _{F4}	V _{F5}
Limits	I _F = 1 mA dc	I _F = 10 mA dc	I _F = 50 mA dc (Pulsed)	I _F = 100 mA dc (Pulsed)	I _F = 200 mA dc (Pulsed)
	V dc	V dc	V dc	V dc	V dc
minimum	0.540	0.660	0.760	0.820	0.870
maximum	0.620	0.740	0.860	0.920	1.000

Courant : I_{max}

Forward Surge Current: 4A, (tp = 1µs); 0.5A (tp = 1s)

Puissance (limitation thermique) : P_{max}


DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	TA = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	186 mW
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW

Limitations des composants (2)

Le **domaine de sécurité** correspond aux couples (V, I) assurant un fonctionnement sûr du composant :

$$V_{Limite} = \frac{P_{max}}{I}$$

Limitations des composants (3)

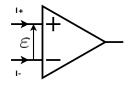
• Dispersion des paramètres : exemple β d'un transistor

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
h _{21E}	Static Forward Current Transfer Ratio	V _{CE} = 5V Group A Group B Group C	I _C = 2mA BC107, BC108 All Types BC108, BC109 BC107	110 180	тур.	220 460 800 460	Oiiik
			BC108 BC109	110 180		800 800	

 Limitations électriques (courant de fuite, gain fini, impédance d'entrée finie...)

	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I _{CBO(1)}	Collector-Base Leakage Current	V _{CB} = 45V BC107			15	nA
		V _{CB} = 25V BC108, BC109	9		15	TIA.
I _{CBO(1)}	Collector-Emitter Leakage Current	V _{CB} = 45V BC107			4	μА
	@Tamb =125°C	V _{CB} = 25V BC108, BC109)		4	μι
l _{EBO}	Emitter Cut-off Current	V _{EB} = 4V I _C = 0			1	μА

Limitations en fonctionnement : ex. slew rate d'un A.O.


operating characteristics, V_{CC±} = ±15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDIT	TIONS		MIN	TYP	MAX	UNIT
		V _I = 10 V,	$R_L = 2 k\Omega$	CL = 100 pF,	See Figure 1	8*	13		
SR	Slew rate at unity gain	V _I = 10 V,	R _L = 2 kΩ,	C _L = 100 pF,		5*			V/µs

L'amplificateur opérationnel en régime linéaire

Représentations :

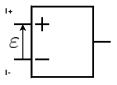
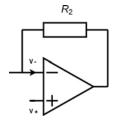
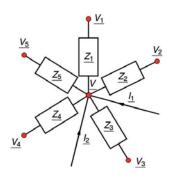


fig: Représentation US


fig: Représentation EU

- Propriétés (règle des 3 zéros) :
 - $I_+ = I_- = 0$ (impédances d'entrée infinies)
 - En régime linéaire : $\varepsilon = 0$
 - Impédance de sortie nulle
- **Remarque** : les alimentations $+V_{CC}$ et $-V_{CC}$ ne sont pas représentées mais sont indispensables.

L'amplificateur opérationnel en régime linéaire


Conditions pour être en régime linéaire :

 Contre-réaction négative : il faut avoir un bouclage de la sortie sur l'entrée V_ de l'A.O. :

⇒ La contre-réaction négative est indispensable compte tenu du fonctionnement différentiel de l'A.O.

Montages à amplificateurs opérationnels : Théorème de Millman

$$V = \frac{\sum_{i} \frac{V_{i}}{Z_{i}} + \sum_{j} I_{j}}{\sum_{i} \frac{1}{Z_{i}}}$$

V est le **barycentre des potentiels voisins** pondérés par l'inverse des impédances.

Montages à amplificateurs opérationnels : Théorème de Millman

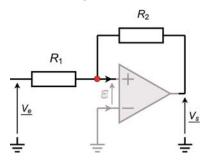
Démonstration :

• Dans chaque branche i contenant une impédance on a : $V_i - V$

On applique la loi des nœuds en V:

$$\sum_{i} I_{i} + \sum_{i} I_{j} = 0$$

En remplaçant on obtient :

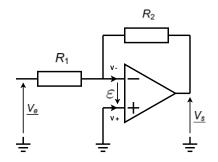

$$\sum_{i} \frac{V_{i} - V}{Z_{i}} + \sum_{j} I_{j} = 0 \quad \Rightarrow \quad \sum_{i} \frac{V_{i}}{Z_{i}} + \sum_{j} I_{j} = \sum_{i} \frac{V}{Z_{i}}$$

On obtient finalement :

$$V = \frac{\sum_{i} \frac{V_{i}}{Z_{i}} + \sum_{j} l_{j}}{\sum_{i} \frac{1}{Z_{i}}}$$

Montages à amplificateurs opérationnels : Théorème de Millman

Utilisation dans les montages à A.O. :



• Permet de calculer les potentiels V_+ et V_- : les courants i_+ et i_- sont

nuls, on a donc ici par exemple :
$$V_{-} = \frac{\frac{V_{e}}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{V_{e}R_{2} + V_{s}R_{1}}{R_{1} + R_{2}}$$

Montage amplificateur inverseur

Schéma :

• Propriétés :

•
$$H = \frac{V_s}{V_e} = -\frac{R_2}{R_1}$$

•
$$Z_e = R_1$$

Montage amplificateur inverseur

Démonstration :

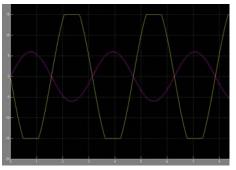
■ Théorème de Millman en V_−:

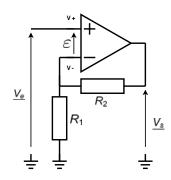
$$V_{-} = \frac{\frac{V_{e}}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{V_{e}R_{2} + V_{s}R_{1}}{R_{1} + R_{2}}$$

- $V_{+} = 0$
- On utilise le fait que $\varepsilon = V_+ V_- = 0$ $\Rightarrow V_e R_2 + V_s R_1 = 0$
- On obtient finalement : $H = \frac{V_s}{V_e} = -\frac{R_2}{R_1}$

Montage amplificateur inverseur

Représentation temporelle :




fig: Entrée en violet, sortie en jaune

Remarque :

• La tension de sortie ne peut sortir de l'intervalle $[-V_{cc}; +V_{cc}]$, sinon, il y a saturation

Montage amplificateur non-inverseur

Schéma :

Propriétés :

•
$$H = \frac{V_s}{V_e} = 1 + \frac{R_2}{R_1}$$

•
$$Z_e = \infty$$

Montage amplificateur non-inverseur

Démonstration :

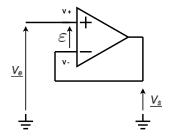
● Théorème de Millman en V_ :

$$V_{-} = \frac{\frac{0}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{R_{1}}{R_{1} + R_{2}} V_{s}$$

- $V_{+} = V_{e}$
- On utilise le fait que $\varepsilon = V_+ V_- = 0$ $\Rightarrow V_e = \frac{R_1}{R_1 + R_2} V_s$
- On obtient finalement : $H = \frac{V_s}{V_e} = 1 + \frac{R_2}{R_1}$

Montage amplificateur non-inverseur

Représentation temporelle :


fig: Entrée en violet, sortie en jaune

Remarque :

• La tension de sortie ne peut sortir de l'intervalle $[-V_{cc}; +V_{cc}]$, sinon, il y a saturation

Montage suiveur

Schéma :

• Propriétés :

•
$$H = \frac{V_s}{V_s} = 1$$

•
$$Z_{\rm e}=\infty$$

Montage suiveur

Démonstration :

- $V_{-} = V_{s}$
- $V_+ = V_e$
- On utilise le fait que $\varepsilon = V_+ V_- = 0$ $\Rightarrow V_e = V_s$
- On obtient donc : $H = \frac{V_s}{V_e} = 1$


Intérêt du montage :

Permet d'avoir une **impédance d'entrée infinie** tout en transmettant de manière transparente le signal d'entrée.

Il isole les blocs entre eux, ce qui permet de multiplier les fonctions de transfert successives de la chaine.

Montage sommateur inverseur

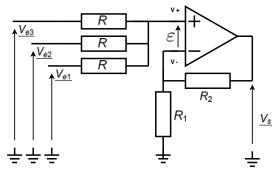
Schéma :

Propriétés :

•
$$V_s = -\frac{R_2}{R_1}(V_{e1} + V_{e2} + V_{e3})$$

Montage sommateur inverseur

Démonstration :


■ Théorème de Millman en V_−:

$$V_{-} = \frac{\frac{V_{e1}}{R_{1}} + \frac{V_{e2}}{R_{1}} + \frac{V_{e3}}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{1}} + \frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{(V_{e1} + V_{e2} + V_{e3})R_{2} + V_{s}R_{1}}{R_{1} + R_{2}}$$

- $V_{+} = 0$
- On utilise le fait que $\varepsilon = V_+ V_- = 0$ $\Rightarrow (V_{e1} + V_{e2} + V_{e3})R_2 + V_sR_1 = 0$
- On obtient finalement : $V_s = -\frac{R_2}{R_1}(V_{e1} + V_{e2} + V_{e3})$

Montage sommateur non-inverseur

Schéma :

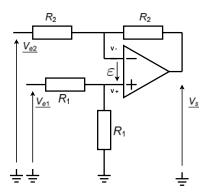
• Propriétés :

•
$$V_s = \left(1 + \frac{R_2}{R_1}\right) \frac{V_{e1} + V_{e2} + V_{e3}}{3}$$

Montage sommateur non-inverseur

Démonstration :

•
$$V_{-} = \frac{\frac{0}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{R_{1}}{R_{1} + R_{2}} V_{s}$$


•
$$V_{+} = \frac{\frac{V_{e1}}{R} + \frac{V_{e2}}{R} + \frac{V_{e3}}{R}}{\frac{1}{R} + \frac{1}{R} + \frac{1}{R}} = \frac{V_{e1} + V_{e2} + V_{e3}}{3}$$

• On utilise le fait que $\varepsilon = V_+ - V_- = 0$

$$\Rightarrow V_s = \left(1 + \frac{R_2}{R_1}\right) \frac{V_{e1} + V_{e2} + V_{e3}}{3}$$

Montage soustracteur

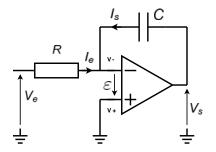
Schéma :

- Propriétés :
 - $V_s = V_{e1} V_{e2}$

Montage soustracteur

Démonstration :

$$V_{-} = \frac{\frac{V_{e2}}{R_{2}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{2}} + \frac{1}{R_{2}}} = \frac{1}{2}(V_{e2} + V_{s})$$


•
$$V_+ = \frac{R_1}{R_1 + R_1} V_{e1} = \frac{1}{2} V_{e1}$$

• On utilise le fait que $\varepsilon = V_+ - V_- = 0$

$$\Rightarrow$$
 $V_s = V_{e1} - V_{e2}$

Montage intégrateur (inverseur)

Schéma :

• Propriétés :

•
$$V_s(t) = -\frac{1}{RC} \int V_e(t) dt$$

Montage intégrateur (inverseur)

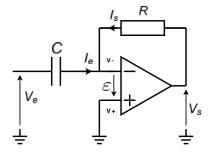
Démonstration (Attention, on travaille en temporel ici) :

•
$$V_{-} = V_{+} = 0$$

$$I_{e} = \frac{V_{e} - V_{-}}{R} = \frac{V_{e}}{R}$$

$$I_{s} = C \frac{d(V_{s} - V_{-})}{dt} = C \frac{d(V_{s})}{dt}$$

• Or $I_e = -I_s$ donc:


$$\frac{V_{e}}{R} = -C \frac{d(V_{s})}{dt}$$

On obtient donc finalement :

$$V_s(t) - V_s(0) = -\frac{1}{RC} \int V_e(t) dt$$

Montage dérivateur (inverseur)

Schéma :

• Propriétés :

$$V_s(t) = -RC \frac{d(V_e)}{dt}$$

Montage dérivateur (inverseur)

Démonstration (Attention, on travaille en temporel ici) :

•
$$V_{-} = V_{+} = 0$$

$$I_{s} = \frac{V_{s} - V_{-}}{R} = \frac{V_{s}}{R}$$

$$I_{e} = C \frac{d(V_{e} - V_{-})}{dt} = C \frac{d(V_{e})}{dt}$$

• Or $I_e = -I_s$ donc :

$$\frac{V_{\rm s}}{R} = -C \frac{d(V_{\rm e})}{dt}$$

On obtient donc finalement :

$$V_{s}(t) = -RC \frac{d(V_{e})}{dt}$$

Plan

- Electronique linéaire en représentation temporelle
 - Les composants élémentaires de l'électronique
 - Amplificateur opérationnel en régime linéaire
- Electronique linéaire en représentation fréquentielle
 - Représentation fréquentielle
 - Filtrage du premier ordre
- 3 Electronique non linéaire
 - Amplificateur opérationnel en régime saturé
 - Comparateurs et triggers
 - Générateur de signaux carrés et triangulaires

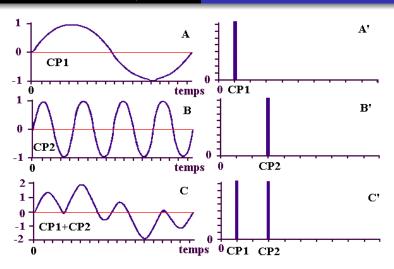


fig: Dualité temps-fréquence

Pourquoi utiliser la réprésentation fréquentielle

En pratique, on rencontre de nombreux signaux **périodiques** : ils peuvent se décomposer (voir cours sur la décomposition en série de Fourier) en **sinusoïdes** de la forme :

$$u(t) = Asin(\omega_0 t + \Phi)$$

- La description temporelle (sinusoïde) est redondante : il n'est pas utile de connaître la valeur de U à tout instant pour caractériser le signal.
- La connaissance de la fréquence ω₀ et de la phase Φ est suffisante ⇒ représentation fréquentielle ou complexe du signal.

$$u(t) = A\sin(\omega_0 t + \Phi)$$
 \Rightarrow $\underline{U} = Ae^{j\Phi}$

Représentation fréquentielle : Impédances

Le tableau suivant récapitule pour les 2 composants de base, les expressions des relations courant-tension en temporel et en complexe en **convention récepteur** :

	Relation U-I (temporel)	Relation U-I (complexe)	Impédance (Ohm)	
Résistance $U = RI$		<u>U</u> = R <u>I</u>	R	
Condensateur	$i = \frac{dq}{dt} = C\frac{d(u_C)}{dt}$	$\underline{U_{C}} = \frac{1}{\jmath C \omega} \underline{I}$	$\frac{1}{\jmath C\omega}$	
Inductance	$u_L = L \frac{di}{dt}$	$\underline{U_L} = \jmath L \omega \underline{I}$	$\jmath {f L} \omega$	

Représentation fréquentielle : Fonction de transfert

Considérons à présent un bloc (quadripôle) constitué de composants linéaires. Pour le caractériser, il faut déterminer :

• L'amplification A:

égale au rapport de l'amplitude du signal de sortie sur celle du signal d'entrée pour chacune des fréquences possibles du signal.

$$A(j\omega) = \frac{|\underline{U}_{s}(j\omega)|}{|\underline{U}_{e}(j\omega)|}$$

• Le déphasage φ :

égal à la différence entre la phase (argument) du signal de sortie et la phase du signal d'entrée pour chacune des fréquences possibles du signal.

$$\varphi(\jmath\omega) = \arg \underline{U_s}(\jmath\omega) - \arg \underline{U_e}(\jmath\omega)$$

Représentation fréquentielle : Fonction de transfert

Pour simplifier, on utilise la **fonction de transfert** : **Rapport** de l'amplitude complexe de la **sortie** sur celle de l'**entrée** :

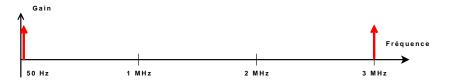
$$\underline{H}(\jmath\omega) = \frac{\underline{U_s}(\jmath\omega)}{\underline{U_e}(\jmath\omega)}$$

A partir de la fonction de transfert, on obtient :

• L'amplification :

$$A(j\omega) = |\underline{H}(j\omega)| = \left| \frac{\underline{U}_{s}(j\omega)}{\underline{U}_{e}(j\omega)} \right|$$

La phase :

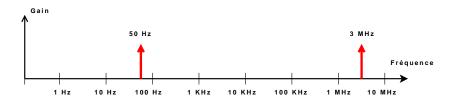

$$\varphi(\jmath\omega) = \arg \underline{H}(\jmath\omega) = \arg \underline{\underline{U_s}(\jmath\omega)} = \arg \underline{\underline{U_s}(\jmath\omega)} - \arg \underline{\underline{U_e}(\jmath\omega)}$$

Représentation fréquentielle : Fonction de transfert Comment représenter une fonction de transfert?

Echelle des fréquences (Abscisse du graphe) :

Question: Comment représenter sur un même graphe les fréquences correspondant par exemple au secteur (50*Hz*) et à un oscillateur à quartz de 3MHz?

Représentation avec échelle linéaire


Problème : la représentation de la composante à 50Hz est très **écrasée**.

Représentation fréquentielle : Fonction de transfert Comment représenter une fonction de transfert?

Echelle des fréquences (Abscisse du graphe) :

Idée : espacer les fréquences de la même distance à chaque fois qu'on les multiplient par 10 ⇒ **Echelle logarithmique**

Représentation avec échelle logarithmique

Intérêt : On peut représenter de manière claire une large gamme de fréquence.

Représentation fréquentielle : Fonction de transfert Comment représenter une fonction de transfert?

Echelle des amplifications (Ordonnée du graphe) :

On a le même problème que pour les fréquences : le graphe doit faire apparaitre une dynamique d'amplification importante, typiquement un facteur 10000 ou plus. On a donc recours à l'échelle logarithmique.

On définit le gain en décibel par :

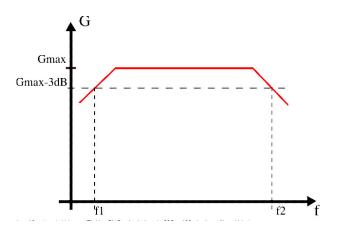
$$G_{dB} = 20 \log A$$

Représentation fréquentielle : Fréquence de coupure

La fréquence de coupure f_c est la fréquence pour laquelle le quadripôle a une amplification en tension ou courant linéaire égale à son amplification maximale divisée par $\sqrt{2}$.

$$A(f_c) = \frac{A_{max}}{\sqrt{2}}$$

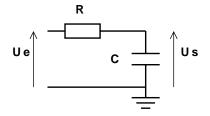
En dB, cela correspond à :


$$G_{dB}(f_c) = 20 \log \left(\frac{A_{max}}{\sqrt{2}}\right) = 20(\log A_{max} - \log \sqrt{2})$$

$$= G_{max_{dB}} - 10 \log 2$$
 $G_{dB}(f_c) = G_{max_{dB}} - 3dB$

La **bande passante** à -3dB est la plage de fréquences pour lesquelles le gain est compris entre $G_{max_{dB}} - 3dB$ et $G_{max_{dB}}$.

Représentation fréquentielle : Fréquence de coupure



La **bande passante** à -3dB est la plage de fréquences pour lesquelles le gain est compris entre $G_{max_{dB}} - 3dB$ et $G_{max_{dB}}$.

Utilisation de la représentation fréquentielle Filtre passe-bas passif du 1er ordre (1)

On étudie le circuit suivant :

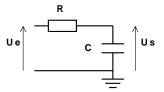
$$\underline{H}(\jmath\omega) = \frac{\underline{U_s}(\jmath\omega)}{\underline{U_e}(\jmath\omega)} = \frac{\underline{Z_C}}{\underline{Z_R} + \underline{Z_C}}$$

$$= \frac{\frac{1}{\jmath C\omega}}{R + \frac{1}{\jmath C\omega}} = \frac{1}{1 + \jmath RC\omega}$$

Utilisation de la représentation fréquentielle Filtre passe-bas passif du 1er ordre (2)

On en déduit les grandeurs caractéristiques :

Amplification :


$$A = |\underline{H}(\jmath\omega)| = \left| \frac{1}{1 + \jmath RC\omega} \right|$$
$$= \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

Phase :

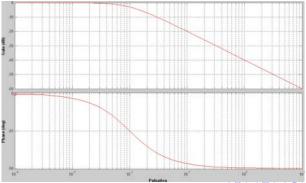
$$\varphi = \arg \underline{H}(\jmath \omega) = \arg 1 - \arg (1 + \jmath RC\omega)$$
$$= 0 - \tan^{-1} \left(\frac{RC\omega}{1}\right)$$
$$= -\tan^{-1}(RC\omega)$$

Utilisation de la représentation fréquentielle Filtre passe-bas passif du 1er ordre (3)

Représentation de la fonction de transfert du filtre du premier ordre étudié :

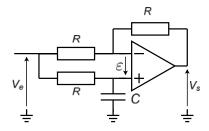
Gain en décibels :

$$G = 20 \log \left(\frac{1}{\sqrt{1 + (RC\omega)^2}} \right)$$


Phase :

$$\varphi = -tan^{-1}(RC\omega)$$

Utilisation de la représentation fréquentielle Filtre passe-bas passif du 1er ordre (4)


Représentation de la fonction de transfert du filtre du premier ordre étudié :

On choisit ici $\tau = RC = 0.01s$

Montage déphaseur (retard de phase)

Schéma :

Propriétés :

- Amplification : A = 1
- Phase : $\varphi = -2tan^{-1}(RC\omega)$ (retard de phase)

Montage déphaseur (retard de phase)

Démonstration :

$$\underline{V}_{-} = \frac{\frac{\underline{V}_{e}}{\overline{R}} + \frac{\underline{V}_{s}}{\overline{R}}}{\frac{1}{R} + \frac{1}{R}} = \frac{\underline{V}_{e} + \underline{V}_{s}}{2}$$

•
$$\underline{V_+} = \frac{\frac{\underline{V_e}}{R} + 0 \, \jmath C\omega}{\frac{1}{R} + \jmath C\omega} = \frac{\underline{V_e}}{1 + \jmath RC\omega}$$

•
$$\underline{V_{+}} = \underline{V_{-}} \Rightarrow \frac{\underline{V_{e}}}{1 + \jmath RC\omega} = \frac{\underline{V_{e}} + \underline{V_{s}}}{2}$$

$$\Rightarrow \frac{\underline{V_{s}}}{\overline{V_{e}}} = \frac{1 - \jmath RC\omega}{1 + \jmath RC\omega}$$

Montage déphaseur (retard de phase)

Représentation temporelle :

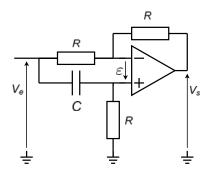


fig: Entrée en violet, sortie en jaune

- Remarque :
 - On constate que la sortie est en retard sur l'entrée.

Montage déphaseur (avance de phase)

Schéma :

Propriétés :

$$\frac{V_s}{V_e} = -\frac{1 - \jmath RC\omega}{1 + \jmath RC\omega}$$

- Amplification : A = 1
- Phase : $\varphi = \pi 2tan^{-1}(RC\omega)$ (avance_de_phase)

Montage déphaseur (avance de phase)

Démonstration :

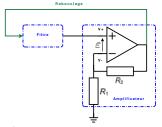
•
$$\underline{V}_{-} = \frac{\underline{\frac{V_e}{R}} + \underline{\frac{V_s}{R}}}{\underline{\frac{1}{R}} + \underline{\frac{1}{R}}} = \underline{\frac{V_e + V_s}{2}}$$

•
$$\underline{V_+} = \frac{\frac{0}{R} + jC\omega \underline{V_e}}{\frac{1}{R} + jC\omega} = \frac{jRC\omega \underline{V_e}}{1 + jRC\omega}$$

•
$$\underline{V_{+}} = \underline{V_{-}}$$
 $\Rightarrow \frac{\jmath RC\omega}{1 + \jmath RC\omega} = \frac{\underline{V_{e}} + \underline{V_{s}}}{2}$
 $\Rightarrow \frac{\underline{V_{s}}}{\overline{V_{e}}} = \frac{-1 + \jmath RC\omega}{1 + \jmath RC\omega}$

Montage déphaseur (avance de phase)

Représentation temporelle :


fig: Entrée en violet, sortie en jaune

Remarque :

On constate que la sortie est en avance sur l'entrée.

Oscillateur sinusoïdal

Schéma :

Principe d'un oscillateur :

- Le filtre sélectif a une amplification maximale (par ex A₀ = 0.2) pour une fréquence donnée f₀.
- Si l'amplification de l'ampli vaut $1/A_0(ici = 5)$, celle de la chaîne {filtre + ampli} vaut : A = 1 pour $f = f_0$, A < 1 sinon.
- Compte tenu du rebouclage, les oscillations à f₀ s'entretiennent (A = 1) et les autres fréquences disparaissent (A < 1)

Plan

- Electronique linéaire en représentation temporelle
 - Les composants élémentaires de l'électronique
 - Amplificateur opérationnel en régime linéaire
- Electronique linéaire en représentation fréquentielle
 - Représentation fréquentielle
 - Filtrage du premier ordre
- 3 Electronique non linéaire
 - Amplificateur opérationnel en régime saturé
 - Comparateurs et triggers
 - Générateur de signaux carrés et triangulaires

Conditions de fonctionnement linéaire d'un A.O.

Rappel : conditions pour être en régime linéaire

 Contre-réaction négative : il faut avoir un bouclage de la sortie sur l'entrée V de l'A.O. :

⇒ La contre-réaction négative est indispensable compte tenu du fonctionnement différentiel de l'A.O.

Conditions de fonctionnement linéaire d'un A.O.

Dém : la tension de sortie de l'A.O. évolue selon la loi :

$$V_{\rm S} + \frac{1}{\omega_{\rm C}} \frac{dV_{\rm S}}{dt} = \mu \varepsilon \text{ avec } \mu = 10^5$$

Dans le montage amplificateur inverseur, avec contre-réaction **négative**, on a :

$$V_{s} + \frac{1}{\omega_{c}} \frac{dV_{s}}{dt} = \mu(V_{+} - V_{-}) = -\mu \frac{R_{1} V_{s} + R_{2} V_{e}}{R_{1} + R_{2}}$$

$$\Rightarrow V_{s} \left(1 + \mu \frac{R_{1}}{R_{1} + R_{2}}\right) + \frac{1}{\omega_{c}} \frac{dV_{s}}{dt} = -\mu \frac{R_{2}}{R_{1} + R_{2}} V_{e}$$

$$\downarrow V_{s} + \frac{R_{1} + R_{2}}{\mu R_{1}} \frac{1}{\omega_{c}} \frac{dV_{s}}{dt} = -\frac{R_{2}}{R_{1}} V_{e}$$

Conditions de fonctionnement linéaire d'un A.O.

Dém : La tension de sortie de l'A.O. évolue selon la loi :

$$V_{\rm S} + rac{1}{\omega_{
m G}}rac{dV_{
m S}}{dt} = \mu arepsilon ext{ avec } \mu \simeq 10^5$$

Dans le montage amplificateur inverseur, avec contre-réaction positive, on a:

$$V_{s} + \frac{1}{\omega_{c}} \frac{dV_{s}}{dt} = \mu(V_{+} - V_{-}) = +\mu \frac{R_{1}V_{s} + R_{2}V_{e}}{R_{1} + R_{2}}$$

$$\Rightarrow V_{s} \left(1 - \mu \frac{R_{1}}{R_{1} + R_{2}}\right) + \frac{1}{\omega_{c}} \frac{dV_{s}}{dt} = +\mu \frac{R_{2}}{R_{1} + R_{2}}V_{e}$$

$$\Rightarrow V_{s} - \frac{R_{1} + R_{2}}{\mu R_{1}} \frac{1}{\omega_{c}} \frac{dV_{s}}{dt} = +\frac{R_{2}}{R_{1}}V_{e}$$

$$\Rightarrow V_{s} = Ae^{+\frac{R_{1} + R_{2}}{\mu R_{1}\omega_{c}}} t$$

$$\Rightarrow V_{s} = Ae^{+\frac{R_{1} + R_{2}}{\mu R_{1}\omega_{c}}} t + B \Rightarrow \text{divergent}$$

L'amplificateur opérationnel en régime saturé

- Propriétés (règle des 2 zéros) :
 - $I_+ = I_- = 0$ (impédances d'entrée infinies) : **toujours vrai**
 - Impédance de sortie nulle : toujours vrai
- Saturation :
 - Si $\varepsilon > 0 \Rightarrow V_s = +V_{CC}$
 - Si $\varepsilon < 0 \Rightarrow V_s = -V_{CC}$
- **Remarque** : les alimentations $+V_{CC}$ et $-V_{CC}$ ne sont pas représentées mais sont indispensables.

Limitations de l'amplificateur opérationnel

Limitations électriques du TL084 :

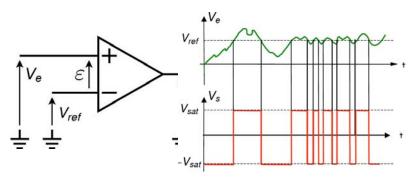
PARAMETER		TEST CONDITIONS		TAT	TL081C TL082C TL084C			UNIT	
					MIN	TYP	MAX		
	Input offset voltage	V _O = 0 R _S = 50		25°C		3	15		
VIO		v0=0	KS = 50 II	Full range			20	๗	
αΛΙΟ	Temperature coefficient of input offset voltage	V _O = 0	R _S = 50 Ω	Full range		18		μV/°C	
10	Input offset current‡	V _O = 0		25°C		.5	200	pA	
				Full range			2	nA	
	Input bias current ‡	V _O = 0		25°C		30	400	pA	
IB IIB				Full range			10	nA	
Vicr	Common-mode input voltage range			25°C	±11	-12 to 15		v	
	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$		25°C	±12	±13.5			
VOM		R _L ≥ 10 kΩ			±12			V	
		R _L ≥2 kΩ		Full range	±10	±12			
	Large-signal differential voltage amplification	V _O = ±10 V,	$R_L \geq 2 \ k\Omega$	25°C	25	200			
AVD		V _O = ±10 V.	R _L ≥2kΩ	Full range	15			V/mV	
B ₁	Unity-gain bandwidth			25°C		3		MHz	
η	Input resistance	4		25°C		1012		1	
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} m V _O = 0,	in, R _S = 50 Ω	25°C	70	86		dB	
ksvr	Supply-voltage rejection ratio (\Delta VCC±/\Delta V(O)	V _{CC} = ±15 V V _O = 0.	to ±9 V, R _S = 50 Ω	25°C	70	86		dΒ	
loc	Supply current (per amplifier)	V _O = 0,	No load	25°C		1.4	2.8	mA	
Vot/Voz	Crosstalk attenuation	Ayro = 100		25°C		120		dB	

Limitations de l'amplificateur opérationnel

Limitations en fonctionnement du TL084 :

operating characteristics, V_{CC+} = ±15 V, T_A = 25°C (unless otherwise noted)

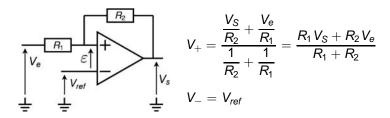
PARAMETER		TEST CONDITIONS					TYP	MAX	UNIT
		V _I = 10 V, V _I = 10 V, T _A = -55°C to 125°C,	$R_L = 2 k\Omega$	C _L = 100 pF,	See Figure 1	8° 5°	13		V/µs
SR	Slew rate at unity gain		$R_L = 2 k\Omega$, See Figure 1	CL = 100 pF,					
t _f	Rise time	14 - 0014	$R_L=2~k\Omega, \qquad C_L=100~pF,$			0.05		μs	
	Overshoot factor	V _I = 20 mV,		CL = 100 pF,	See Figure 1		20		%
	Equivalent input noise voltage	D	f = 1 kHz				18		nV/√Hz
٧n		R _S = 20 Ω	f = 10 Hz to 10 kHz				4		μV
In	Equivalent input noise current	R _S = 20 Ω,	f = 1 kHz				0.01		pA√Hz
THD	Total harmonic distortion	V _I rms = 6 V, f = 1 kHz	A _{VD} = 1,	R _S ≤ 1 kΩ,	R _L ≥2 kΩ,		0.003		%


Limitations thermiques du TL084 :

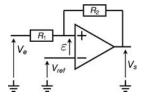
DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	TA = 70°C POWER RATING	TA = 85°C POWER RATING	TA = 125°C POWER RATING
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	186 mW
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW

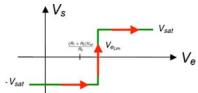
Le comparateur à A.O.


L'A.O. en régime saturé fonctionne en comparateur :

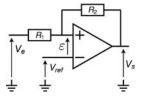
- Caractéristiques :
 - Très fort gain en boucle ouverte.
 - Problème : oscillations dues au bruit.


• Quasi-identique à l'amplificateur inverseur :

• Fonctionnement en saturé : on distingue 2 cas

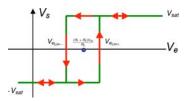

- $V_S = -V_{sat}$.
- $V_S = +V_{sat}$.

• Premier cas : $V_S = -V_{sat}$:

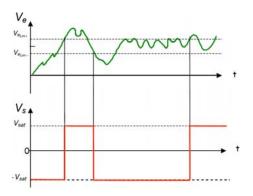


 $egin{aligned} V_{S} & ext{conserve sa valeur tant que} \ V_{+} > V_{ref} \ \Rightarrow V_{e_{Lim+}} = rac{(R_1 + R_2) V_{ref} + R_1 V_{sat}}{R_2} \end{aligned}$

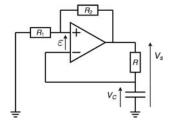
On obtient le fonctionnement suivant



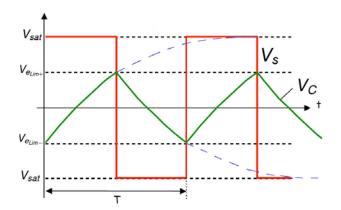
• Deuxième cas : $V_S = +V_{sat}$:


 V_{S} conserve sa valeur tant que $V_{+} < V_{ref}$ $\Rightarrow V_{e_{L/m-}} = \frac{(R_{1} + R_{2})V_{ref} - R_{1}V_{sat}}{R_{2}}$

On obtient le fonctionnement suivant


Le cycle décrit est appelé cycle d'hysteresis.

Intérêt du trigger de Schmidt : comparateur à seuil


- Propriétés :
 - Permet de filtrer le bruit en entrée.
 - Utilisé pour la génération de signaux.

Couplage d'un trigger et d'un circuit RC :

- Si $V_S = +V_{sat}$: Le condensateur se charge jusqu'à : $V_C = V_{e_{Lim+}} = \frac{R_1}{R_1 + R_2} V_{sat}$
- Si $V_S = -V_{sat}$: Le condensateur se décharge jusqu'à : $V_C = -\frac{R_1}{R_1 + R_2}V_{sat}$

Chronogrammes:

Calcul de la période :

• Calcul du temps de charge (suite) :

La charge se termine lorsque :
$$u_c = \frac{R_1}{R_1 + R_2} V_{sat}$$

$$\Rightarrow \frac{R_1}{R_1 + R_2} V_{sat} = -\left(1 + \frac{R_1}{R_1 + R_2}\right) V_{sat} e^{-\frac{t}{\tau}} + V_{sat}$$

$$\Rightarrow e^{-\frac{t}{\tau}} = 1 + \frac{2R_1}{R_2}$$

$$\Rightarrow t_{charge} = \tau \ln \left(1 + \frac{2R_1}{R_2} \right)$$

Calcul de la période :

• Calcul du temps de décharge :

Equation différentielle de décharge : $u_r + u_c = -V_{sat}$

$$\Rightarrow \frac{du_c}{dt} + \frac{1}{\tau}u_c = \frac{-V_{sat}}{\tau} \text{ avec } \tau = RC$$

$$\Rightarrow u_c = Ae^{-\frac{t}{\tau}} + B$$

Détermination de A et B :

• A
$$t = 0$$
: $u_c = A + B = \frac{R_1}{R_1 + R_2} V_{sat}$

• Quand
$$t \to \infty$$
: $u_c = B = -V_{sat}$

On obtient donc:

$$\Rightarrow u_{c} = \left(1 + \frac{R_{1}}{R_{1} + R_{2}}\right) V_{sat} e^{-\frac{t}{\tau}} - V_{sat}$$

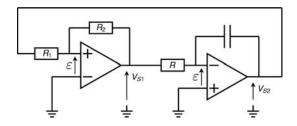
Calcul de la période :

Calcul du temps de décharge (suite) :

La charge se termine lorsque :
$$u_c = -\frac{R_1}{R_1 + R_2} V_{sat}$$

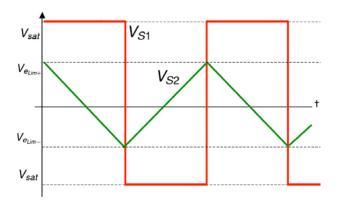
$$\Rightarrow -\frac{R_1}{R_1 + R_2} V_{sat} = (1 + \frac{R_1}{R_1 + R_2}) V_{sat} e^{-\frac{t}{\tau}} - V_{sat}$$

$$\Rightarrow e^{-\frac{t}{\tau}} = 1 + \frac{2R_1}{R_2}$$


$$\Rightarrow t_{decharge} = au \ln \left(1 + rac{2R_1}{R_2}
ight)$$

• Au final on a une période :

$$T = t_{charge} + t_{decharge} = 2 au \ln\left(1 + rac{2R_1}{R_2}
ight)$$



Couplage d'un trigger et d'un circuit intégrateur :

- Si $V_{S1}=+V_{sat}$: Le condensateur se décharge jusqu'à : $V_{S2}=-\frac{R_1}{R_2}V_{sat}$
- Si $V_{S1} = -V_{sat}$: Le condensateur se charge jusqu'à : $V_{S2} = \frac{R_1}{R_2}V_{sat}$

Chronogrammes:

Calcul de la période :

• Calcul du temps de charge ($V_{S2} = -V_{sat}$):

Relation sur les courants :
$$i_r = \frac{-V_{sat}}{R} = -C \frac{d(V_{S2})}{dt}$$

$$\Rightarrow V_{S2} = \frac{V_{sat}}{RC}t + A$$

Détermination de A :

• A
$$t = 0$$
: $V_{S2} = A = -\frac{R_1}{R_2}V_{sat}$

On obtient donc:

$$\Rightarrow V_{S2} = \frac{V_{sat}}{RC}t - \frac{R_1}{R_2}V_{sat}$$

Calcul de la période :

Calcul du temps de charge (suite) :

La charge se termine lorsque :
$$V_{S2} = \frac{R_1}{R_2} V_{sat}$$

$$\Rightarrow \frac{R_1}{R_2} V_{sat} = \frac{V_{sat}}{RC} t - \frac{R_1}{R_2} V_{sat}$$

$$\Rightarrow t_{charge} = 2RC \frac{R_1}{R_2}$$

Calcul de la période :

• Calcul du temps de décharge ($V_{S2} = V_{sat}$) :

Relation sur les courants :
$$i_r = \frac{V_{sat}}{R} = -C \frac{d(V_{S2})}{dt}$$

$$\Rightarrow V_{S2} = -\frac{V_{sat}}{RC}t + A$$

Détermination de A:

• A
$$t = 0$$
: $V_{S2} = A = \frac{R_1}{R_2} V_{sat}$

On obtient donc:

$$\Rightarrow V_{S2} = -\frac{V_{sat}}{RC}t + \frac{R_1}{R_2}V_{sat}$$

Calcul de la période :

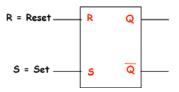
Calcul du temps de décharge (suite) :

La charge se termine lorsque :
$$V_{S2} = -\frac{R_1}{R_2}V_{sat}$$

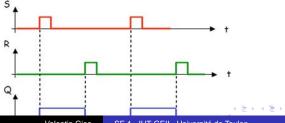
$$\Rightarrow -\frac{R_1}{R_2}V_{sat} = -\frac{V_{sat}}{RC}t + \frac{R_1}{R_2}V_{sat}$$

$$\Rightarrow t_{decharge} = 2RC \frac{R_1}{R_2}$$

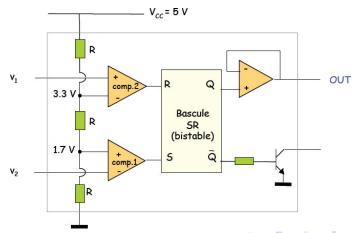
Au final on a une période :


$$T = t_{charge} + t_{decharge} = 4RC \frac{R_1}{R_2}$$

 Rq: pour passer au signal sinusoïdal, on peut utiliser un conformateur à diodes (voir TD).


Le Timer NE555 : un générateur de signaux basé sur une bascule RS

Fonctionnement d'une bascule RS :


		_
5	R	Sortie
0	0	mémorise l'état précédent Q+ = Q
0	1	Q = 0 , Q = 1
1	0	Q = 1 , Q = 0
1	1	A éviter, car contradictoire

Chronogrammes:

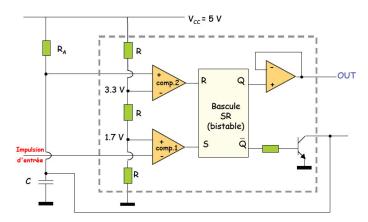
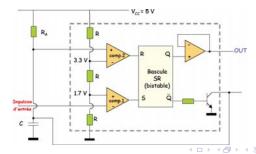
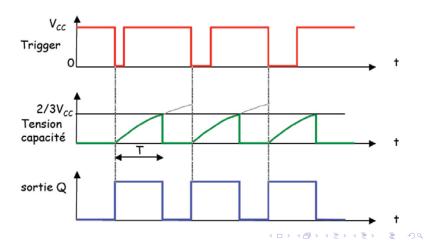

Fonctionnement interne du Timer NE555

Schéma interne :

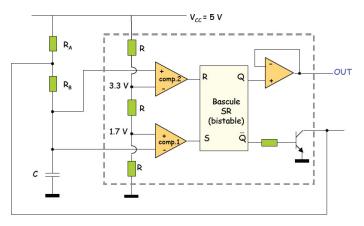
Timer NE555 en montage monostable


Schéma de câblage externe en monostable :

Timer NE555 en montage monostable

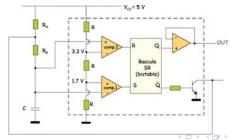

Fonctionnement:

- L'utilisateur envoie une impulsion (0) en entrée ⇒ SET
- Q passe à 1, Q passe à 0 et le transistor ne conduit plus.
- C se charge à travers R jusqu'à ce que V_C = 3.3V
 ⇒ RESET
- Q passe à 0, Q passe à 1 et le transistor conduit. C se décharge instantanément.


Timer NE555 en montage monostable

Chronogrammes :

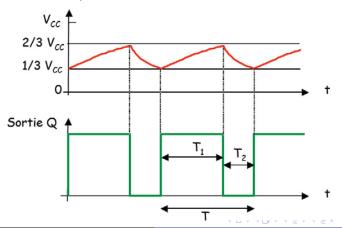
Timer NE555 en montage multivibrateur astable


Schéma de câblage externe en multivibrateur astable :

Timer NE555 en montage multivibrateur astable

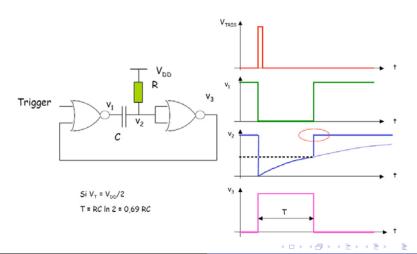
Fonctionnement:

- Supposons que Q = 1, $\overline{Q} = 0$.
- C se charge à travers $R_A + R_B$ jusqu'à ce que $V_C = 3.3V$ $\Rightarrow RESET$
- Q passe à 0, Q passe à 1 et le transistor conduit.
- C se décharge à travers R_B jusqu'à ce que $V_C = 1.7 V$ $\Rightarrow SET$.
- On reboucle le processus à l'infini ⇒ Astable.


Amplificateur opérationnel en régime saturé Comparateurs et triggers

Générateur de signaux carrés et triangulaires

Timer NE555 en montage multivibrateur astable


Chronogrammes :

Tension capacité

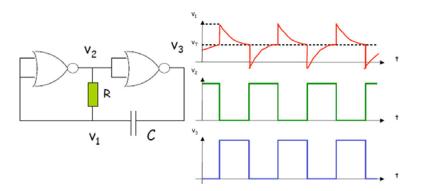

Portes logiques en montage monostable

Schéma et chronogrammes :

Portes logiques en montage multivibrateur astable

Schéma et chronogrammes :

